One-dimensional Bi2MoO6 nanotubes: controllable synthesis by electrospinning and enhanced simulated sunlight photocatalytic degradation performances

  • Jie Zhao
  • Qifang Lu
  • Cuiqing Wang
  • Suwen Liu
Research Paper


One-dimensional Bi2MoO6 nanotubes were successfully synthesized by the electrospinning technique in combination with the calcination process. The as-prepared samples were characterized by thermogravimetric and differential scanning calorimetry, Fourier transform-infrared spectroscope, microscopic Raman spectrometer, X-ray diffraction, scanning electron microscope, and transmission electron microscope. The hollow morphology of the Bi2MoO6 nanotubes can be obtained after calcining the electrospun gel nanofibers. The results of the photocatalytic degradation tests show that the Bi2MoO6 nanotubes possessed a much higher degradation rate of methylene blue than that of degussa P25. In particular, Bi2MoO6 nanotubes calcined at 600 °C for 2 h (marked as BMO-600) exhibited much higher photocatalytic activity than that of γ-Bi2MoO6 phase calcined at 500 °C for 2 h (BMO-500) and that of γ′-Bi2MoO6 phase calcined at 700 °C for 2 h (BMO-700) under simulated sunlight irradiation. The formation of the surface-phase junctions between low-temperature γ-Bi2MoO6 phase and high-temperature γ′-Bi2MoO6 phase may be responsible for the highest photocatalytic activity of the BMO-600 sample.


Electrospinning Bi2MoO6 Nanotubes Photocatalyst Surface-phase junctions 



This work was supported by the National Natural Science Foundation of China (Grant No. 51172133), the Natural Science Foundation of Shandong Province (Grant No. ZR2013BQ001), the Project of Independent Innovation of University Institute of Jinan (Grant No. 201311034), the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J13LA01), and the Science and Technology Development Plan Project of Shandong Province (2014GGX102039).

Supplementary material

11051_2015_3003_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1240 kb)


  1. Chaudhari S, Srinivasan M (2012) 1D hollow a-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22:23049–23056. doi: 10.1039/C2JM32989A CrossRefGoogle Scholar
  2. Chen Z, Qian LW, Zhu J, Yuan YP, Qian XF (2010) Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 12:2100–2106. doi: 10.1039/B921228K CrossRefGoogle Scholar
  3. Cruza AM, Obregon S, Cudllar EL, Mendez UO (2007) Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor. Catal Today 129:194–199. doi: 10.1016/j.cattod.2007.08.004 CrossRefGoogle Scholar
  4. Gruar R, Tighe CJ, Reilly LM, Sankar G, Darr JA (2010) Tunable and rapid crystallisation of phase pure Bi2MoO6 (koechlinite) and Bi2Mo3O12 via continuous hydrothermal synthesis. Solid State Sci 12:1683–1686. doi: 10.1016/j.solidstatesciences.2010.07.001 CrossRefGoogle Scholar
  5. Jiang HQ, Endo H, Hirotaka N, Nagai M, Kobayashi K (2008) Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J Eur Ceram Soc 28:2955–2962. doi: 10.1016/j.jeurceramsoc.2008.05.002 CrossRefGoogle Scholar
  6. Li ZQ, Chen XT, Xue ZL (2013) Bi2MoO6 microstructures: controllable synthesis, growth mechanism, and visible-light-driven photocatalytic activities. CrystEngComm 15:498–508. doi: 10.1039/c2ce26260f CrossRefGoogle Scholar
  7. Li HP, Liu JY, Hou WG, Du N, Zhang RJ, Tao XT (2014a) Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl Catal B 160–161:89–97. doi: 10.1016/j.apcatb.2014.05.019 CrossRefGoogle Scholar
  8. Li HP, Deng QH, Liu JY, Hou WG, Du N, Zhang RJ, Tao XT (2014b) Synthesis, characterization and enhanced visible light photocatalytic activity of Bi2MoO6/Zn-Al layered double hydroxide hierarchical heterostructures. Catal Sci Technol 4:1028–1037. doi: 10.1039/c3cy00940h CrossRefGoogle Scholar
  9. Lin X, Guo XY, Liu D, Wang QW, Zhai HJ, Chang LM (2015) SiO2/Bi2MoO6 nanocomposites with high photocatalytic activity under visible light irradiation. Mater Res Bull 63:72–79. doi: 10.1016/j.materresbull.2014.11.049 CrossRefGoogle Scholar
  10. López Cuéllar E, Martínez-de la Cruz A, Lozano Rodríguez KH, Ortiz Méndez U (2011) Preparation of γ-Bi2MoO6 thin films by thermal evaporation deposition and characterization for photocatalytic applications. Catal Today 166:140–145. doi: 10.1016/j.cattod.2010.05.005
  11. Maczka M, Macalik L, Hermanowicz K, Kepinski L, Hanuza J (2010) Synthesis and phonon properties of nanosized aurivillius phase of Bi2MoO6. J Raman Spectrosc 41:1289–1296. doi: 10.1002/jrs.2568 CrossRefGoogle Scholar
  12. Miao YC, Pan GF, Huo YN, Li HX (2013) Aerosol-spraying preparation of Bi2MoO6: a visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity. Dyes Pigm 99:382–389. doi: 10.1016/j.dyepig.2013.05.005 CrossRefGoogle Scholar
  13. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323–10337. doi: 10.1021/jp801770w CrossRefGoogle Scholar
  14. Shamshi  Hassan M, Amna T, Khil MS (2014) Synthesis of High aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceram Intern 40:423–427. doi: 10.1016/j.ceramint.2013.06.018
  15. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110:17790–17797. doi: 10.1021/jp0622482 CrossRefGoogle Scholar
  16. Sun YY, Wang WZ, Sun SM, Zhang L (2013) A general synthesis strategy for one-dimensional Bi2MO6 (M = Mo, W) photocatalysts using an electrospinning method. CrystEngComm 15:7959–7964. doi: 10.1039/C3CE41347K CrossRefGoogle Scholar
  17. Tian GH, Chen YJ, Zhai RT, Zhou J, Zhou W, Wang RH, Pan K, Tian CG, Fu HG (2013) Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications. J Mater Chem A 1:6961–6968. doi: 10.1039/c3ta10511c CrossRefGoogle Scholar
  18. Tian YL, Cheng FX, Zhang X, Yan F, Zhou BC, Chen Z, Liu JY, Xi FN, Dong XP (2014) Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride-Bi2MoO6 heterojunctions. Powder Technol 267:126–133. doi: 10.1016/j.powtec.2014.07.021 CrossRefGoogle Scholar
  19. Xiang HF, Long YH, Yu XL, Zhang XL, Zhao N, Xu J (2011) A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm 13:4856–4860. doi: 10.1039/c0ce00980f CrossRefGoogle Scholar
  20. Yoon SD, Chen YJ, Yang A, Goodrich TL, Zuo X, Arena DA, Ziemer K, Vittoria C, Harris VG (2006) Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films. J Phys 18:355–361. doi: 10.1088/0953-8984/18/27/L01 Google Scholar
  21. Yuan B, Wang CH, Qi Y, Song XL, Mu K, Guo P, Meng LT (2013) Decorating hierarchical Bi2MoO6 microspheres with uniformly dispersed ultrafine Ag nanoparticles by an in situ reduction process for enhanced visible light-induced photocatalysis. Colloids Surf A 425:99–107. doi: 10.1016/j.colsurfa.2013.02.058 CrossRefGoogle Scholar
  22. Zhang J, Xu Q, Feng ZC, Li MJ, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 120:1766–1769. doi: 10.1002/anie.200704788 CrossRefGoogle Scholar
  23. Zhang LW, Xu TG, Zhao X, Zhu YF (2010) Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl Catal B 98:138–146. doi: 10.1016/j.apcatb.2010.05.022 CrossRefGoogle Scholar
  24. Zhang TY, Yao K, Guo YH (2011) The photocatalytic activity of TiO2 thin film deposited on Al plate together with Cu(II) and Ag(I). Biol Trace Elem Res 143(3):1819–1827. doi: 10.1007/s12011-011-9008-y CrossRefGoogle Scholar
  25. Zhang MY, Shao CL, Mu JB, Huang XM, Zhang ZY, Guo ZC, Zhang P, Liu YC (2012a) Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J Mater Chem 22:577–584. doi: 10.1039/C1JM13470A CrossRefGoogle Scholar
  26. Zhang MY, Shao CL, Mu JB, Zhang ZY, Guo ZC, Zhang P, Liu YC (2012b) One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14:605–612. doi: 10.1039/c1ce05974b CrossRefGoogle Scholar
  27. Zhang MY, Shao CL, Zhang P, Su CY, Zhang X, Liang PP, Sun YY, Liu YC (2012c) Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J Hazard Mater 225–226:155–163. doi: 10.1016/j.jhazmat.05.006 CrossRefGoogle Scholar
  28. Zhang T, Huang JF, Zhou S, Ouyang HB, Cao LY, Li AT (2013) Microwave hydrothermal synthesis and optical properties of flower-like Bi2MoO6 crystallite. Ceram Int 39:7391–7394. doi: 10.1016/j.ceramint.2013.02.079 CrossRefGoogle Scholar
  29. Zhao CH, Zhang GZ, Han WH, Fu JC, He YM, Zhang ZX, Xie EQ (2013) Electrospun In2O3/a-Fe2O3 heterostructure nanotubes for highly sensitive gas sensor applications. CrystEngComm 15:6491–6497. doi: 10.1039/c3ce40962g CrossRefGoogle Scholar
  30. Zhao F, Lu QF, Liu SW, Wang CQ (2014) In2O3/ZnO heterostructured nanotubes: electrospinning fabrication, characterization, and highly enhanced photocatalytic properties. J Sol-Gel Sci Technol 72:137–143. doi: 10.1007/s10971-014-3438-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and EngineeringQilu University of TechnologyJinanPeople’s Republic of China
  2. 2.Lunan Research Institute of Coal ChemistryJiningPeople’s Republic of China

Personalised recommendations