Origin and evolution of paramagnetic states in mixtures of ZnO and carbon nanoparticles during intensive mechanical treatment

  • Mykola Kakazey
  • Marina Vlasova
  • Erick A. Juarez-Arellano
Brief Communication


In this study, the microstructural evolution and reaction processes in the mixture of ZnO + xC nanoparticles during prolonged high-energy mechanical activation were explored. The formation of paramagnetic centers has been identified. It was observed that the evolution of various paramagnetic defects reveals several macroscopic flow processes that take place in the system. Some of these processes are the destruction of primary durable nanoparticle ZnO aggregates, the crushing of individual nanoparticles (250–14 nm), the development of accumulative thermal processes in the sample, the interaction of carbon atoms with oxygen from the treatment chamber and from the surface of the ZnO nanoparticles, the formation of reducing atmosphere in the grinding chamber, and the occurrence of the forming conditions of the phase transition ZnOW → ZnOS on the surface layers of ZnOW nanoparticles.


Composite nanomaterials ZnO + C nanoparticles Intensive mechanical processing Defects formation and evolution Electron paramagnetic resonance 


  1. Abragam A, Bleaney B (2012) Electron paramagnetic resonance of transition ions. Oxford University Press, OxfordGoogle Scholar
  2. Arčon D, Jagličič Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Origin of magnetic moments in carbon nanofoam. Phys Rev B 74:014438CrossRefGoogle Scholar
  3. Ashrafi ABMA, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101CrossRefGoogle Scholar
  4. Ashrafi ABMA, Ueta A, Avramescu A, Kumano H, Suemune I, Ok YW, Seong TY (2000) Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Appl Phys Lett 76:550–552CrossRefGoogle Scholar
  5. Ashrafi ABMA, Suemune I, Kumano H (2002) H2O-vapor-activated ZnO growth on a-face sapphire substrates by metalorganic molecular-beam epitaxy. Jpn J Appl Phys 41:2851–2854CrossRefGoogle Scholar
  6. Barklie RC (2001) Characterisation of defects in amorphous carbon by electron paramagnetic resonance. Diam Relat Mater 10:174–181CrossRefGoogle Scholar
  7. Barklie RC, Collins M, Silva SRP (2000) EPR linewidth variation, spin relaxation times, and exchange in amorphous hydrogenated carbon. Phys Rev B 61:3546–3554CrossRefGoogle Scholar
  8. Beuneu F, l’Huillier C, Salvetat J-P, Bonard J-M, Forro L (1999) Modification of multiwall carbon nanotubes by electron irradiation: an ESR study. Phys Rev B 59:5945–5949CrossRefGoogle Scholar
  9. Bleaney B, Rubins RS (1961) Explanation of some `Forbidden’ transitions in paramagnetic resonance. Proc Phys Soc 77:103–112CrossRefGoogle Scholar
  10. Chen Z, Zhang N, Xu Y-J (2013) Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. Cryst Eng Comm 15:3022–3030CrossRefGoogle Scholar
  11. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573CrossRefGoogle Scholar
  12. Galland D, Herve A (1974) Temperature dependence of the ESR spectrum of the zinc vacancy in ZnO. Sol St Commun 14:953–956CrossRefGoogle Scholar
  13. Geisler CH, Simmons GL (1964) High temperature induced EPR signals in zinc oxide. Phys Lett 11:111–112CrossRefGoogle Scholar
  14. Gogotsi Y, Presser V (2014) Carbon nanomaterials. Taylor & Francis, Boca RatonGoogle Scholar
  15. Gurwitz R, Cohen R, Shalish I (2014) Interaction of light with the ZnO surface: photon induced oxygen “breathing”, oxygen vacancies, persistent photoconductivity, and persistent photovoltage. J Appl Phys 115:033701CrossRefGoogle Scholar
  16. Halliburton LE, Giles NC, Garces NY, Luo M, Xu C, Bai L, Boatner LA (2005) Production of native donors in ZnO by annealing at high temperature in Zn vapor. Appl Phys Lett 87:172108CrossRefGoogle Scholar
  17. Hoffmann K, Hahn D (1974) Electron spin resonance of lattice defects in zinc oxide. Phys Status Solidi A 24:637–648CrossRefGoogle Scholar
  18. Hsu HS, Tung Y, Chen YJ, Chen MG, Lee JS, Sun SJ (2011) Defect engineering of room-temperature ferromagnetism of carbon-doped ZnO. Phys Status Solidi (RRL) 5:447–449CrossRefGoogle Scholar
  19. Hu Y, Chen H-J (2007) Origin of green luminescence of ZnO powders reacted with carbon black. J Appl Phys 101:124902CrossRefGoogle Scholar
  20. Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M (2005) Zinc oxide nanoparticles with defects. Adv Funct Mater 15:1945–1954CrossRefGoogle Scholar
  21. Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E (2012) EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys Rev B 86:014113CrossRefGoogle Scholar
  22. Kakazey MG, Kakazei GN, Gonzalez-Rodriguez JG (2001) Mechanothermal effects on the defect structure in ZnO powders subjected to hydrostatic pressure. Cryst Res Technol 36:429–439CrossRefGoogle Scholar
  23. Kakazey MG, Vlasova M, Dominguez-Patiño M, Dominguez-Patiño G, Gonzalez-Rodriguez G, Salazar-Hernandez B (2002) Hyper-rapid thermal defect annealing during grinding of ZnO powders. J Appl Phys 92:5566–5568CrossRefGoogle Scholar
  24. Kakazey M, Vlasova M, Dominguez-Patiño M, Munguia-Diaz J (2008) Formation of a solid solution of ZnO: Mn2+ during mechanical treatment of oxides mixture. Sol St Commun 145:122–125CrossRefGoogle Scholar
  25. Katumba G, Olumekor L, Forbes A, Makiwa G, Mwakikunga B (2008) Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Sol Energy Mater Sol Cells 92:1285–1292CrossRefGoogle Scholar
  26. Kliava J (1988) EPR spectroscopy of disordered solids. Zinatne, RigaGoogle Scholar
  27. Kunii S, Tobita S, Yirahara E (1966) Intensities and doublet separations of forbidden transitions in the paramagnetic resonance of Mn++ in the II–VI compounds. J Phys Soc Jpn 21:479–484CrossRefGoogle Scholar
  28. Lee GH, Kawazoe T, Ohtsu M (2005) Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures. Appl Surf Sci 239:394–397CrossRefGoogle Scholar
  29. Nistor SV, Nistor LC, Stefan M, Ghica D, Aldica Gh, Barascu JN (2011) Crystallization of disordered nanosized ZnO formed by thermal decomposition of nanocrystalline hydrozincite. Cryst Growth Des 11:5030–5038CrossRefGoogle Scholar
  30. Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RK, Schwartz DA, Gamelin DR (2004) Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films. J Am Chem Soc 126:9387–9398CrossRefGoogle Scholar
  31. Özgür Ü, YaI Alivov, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  32. Palotas AB, Rainey LC, Felderman CJ, Vander Sande JB (1996) Soot morphology: an application of image analysis in high-resolution transmission electron microscopy. Microsc Res Tech 33:266–278CrossRefGoogle Scholar
  33. Pan N, Xue H, Yu M, Cui X, Wang X, Hou JG, Huang J (2010) Tip-morphology-dependent field emission from ZnO nanorod arrays. Nanotechnology 21:225707CrossRefGoogle Scholar
  34. Romeiro FC, Marinho JZ, Silva AC, Cano NF, Dantas NO, Lima RC (2013) Photoluminescence and magnetism in Mn2+-doped ZnO nanostructures grown rapidly by the microwave hydrothermal method. J Phys Chem C 117:26222CrossRefGoogle Scholar
  35. Schallenberger B, Hausmann A (1976) Eigenstörstellen in elektronenbestrahltem Zinkoxid. Z Phys B 23:177–181CrossRefGoogle Scholar
  36. Toloman D, Mesaros A, Popa A, Raita O, Silipas TD, Vasile BS, Pana O, Giurgiu LM (2013) Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. J Alloys Compd 551:502–507CrossRefGoogle Scholar
  37. van Bueren HG (1961) Imperfections in crystals, 2nd edn. North-Holland Pub. Co., AmsterdamGoogle Scholar
  38. Vanheusden K, Seager CH, Warren WL, Trallant DR, Caruso J, Hampden-Smith MJ, Kodas TT (1997) Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. J Lumin 75:11–16CrossRefGoogle Scholar
  39. Vlasenko LS (2010) Magnetic resonance studies of intrinsic defects in ZnO: oxygen vacancy. Appl Magn Reson 39:103–111CrossRefGoogle Scholar
  40. Xu L, Su Y, Chen Y, Xiao H, Zhu LA, Zhou Q, Li S (2006) Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. J Phys Chem B 110:6637–6642CrossRefGoogle Scholar
  41. Yoo YZ, Osaka Y, Fukumura T, Kawaski M, Koinuma H, Chikyow T, Ahmet P, Setoguchi A, Chichibu SF (2001) High temperature growth of ZnS films on bare Si and transformation of ZnS to ZnO by thermal oxidation. Appl Phys Lett 78:616–618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mykola Kakazey
    • 1
  • Marina Vlasova
    • 1
  • Erick A. Juarez-Arellano
    • 2
  1. 1.CIICAp - Universidad Autonoma del Estado de MorelosCuernavacaMexico
  2. 2.Instituto de Química AplicadaUniversidad del PapaloapanOaxacaMexico

Personalised recommendations