Photochemical transformation of silver nanoparticles by combining blue and green irradiation

  • P. E. Cardoso-Avila
  • J. L. Pichardo-Molina
  • C. Murali Krishna
  • R. Castro-Beltran
Research Paper


Spherical silver nanoparticles (diameter 3 nm) were transformed by means of photochemical synthesis using superluminescent LEDs. Flat rounded (21 nm) and decahedral nanoparticles (78 nm) were, respectively, obtained when the colloid was exposed to green and blue radiation. Furthermore, by changing from blue to green radiation at different exposure times, various morphologies and sizes were obtained. Exposure times shorter than 30 min of blue radiation followed by green radiation resulted on different morphologies such as twine rounded (42 nm), flat elongated (peanuts, 17 nm), and flat rounded nanoparticles (11 and 24 nm). Times longer than 45 min produced decahedral nanoparticles with corners ranging from rounded to sharp (size 71–78 nm). Additionally, these results showed that by controlling morphologies and sizes through the combination of blue and green light at different exposure times, it was possible to tune the plasmon band from 511 to 594 nm. Moreover, controlling the morphology of nanoparticles is of prime importance in order to exploit their properties as part of novel emerging technologies.


Decahedral nanoparticles LEDs Photochemical synthesis Plasmon Silver nanoparticles 



The authors are grateful to CONACYT, Mexico, for financial support under project numbers SEP-Conacyt 152971 and CONACyT-DST 164203. We also thank Ricardo Valdivia Hernandez, Claudia G. Elas Alfaro, Esteban Garcia for their technical assistance, and Mario Ruiz Berganza for proofreading the manuscript.

Supplementary material

11051_2015_2920_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (pdf 2046 KB)


  1. Bordenave D, Scarpettini AF, Roldán MV et al (2013) Plasmon-induced photochemical synthesis of silver triangular prisms and pentagonal bipyramids by illumination with light emitting diodes. Mater Chem Phys 139(19):100–106CrossRefGoogle Scholar
  2. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-Interscience, New YorkGoogle Scholar
  3. Cardoso-Avila PE, Pichardo-Molina JL, Upendra Kumar K, Arenas-Alatorre JA (2014) Temperature and amino acid-assisted size- and morphology-controlled photochemical synthesis of silver decahedral nanoparticles. J Exp Nanosci 9(6):639–651CrossRefGoogle Scholar
  4. Conde J, Rosa J, Lima JC, Baptista PV (2012) Nanophotonics for molecular diagnostics and therapy applications. Int J Photoenergy 2012:1–11CrossRefGoogle Scholar
  5. Ditlbacher H, Lamprecht B, Leitner A, Aussenegg FR (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25(8):563–565CrossRefGoogle Scholar
  6. Gonzalez AL, Noguez C (2007) Optical properties of silver nanoparticles. Phys Stat Solidi C 4(11):41184126CrossRefGoogle Scholar
  7. Hu X, Wang T, Wang L, Dong S (2007) Surface-enhanced raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: off-surface plasmon resonance condition. J Phys Chem C 111(19):6962–6969CrossRefGoogle Scholar
  8. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12(4):909–912CrossRefGoogle Scholar
  9. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903CrossRefGoogle Scholar
  10. Krylova GV, Eremenko AM, Smirnova NP, Eustis S (2005) Photochemical preparation of nanoparticles of Ag in aqueous-alcoholic solutions and on the surface of mesoporous silica. Theoret Exp Chem 41(2):105–110CrossRefGoogle Scholar
  11. Kumar C (2009) Metallic nanomaterials, vol 1. Wiley, WeinheimGoogle Scholar
  12. Kumar S, Harrison N, Richards-Kortum R, Sokolov K (2007) Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett 7(5):1338–1343CrossRefGoogle Scholar
  13. Lu H, Zhang H, Yu X, Zeng S, Yong KT, Ho HP (2012) Seed-mediated plasmon-driven regrowth of silver nanodecahedrons (NDs). Plasmonics 7(1):167–173CrossRefGoogle Scholar
  14. Maillard M, Huang P, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett 3(11):1611–1615CrossRefGoogle Scholar
  15. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phy 330(3):377–445CrossRefGoogle Scholar
  16. Motl NE, Smith AF, DeSantis CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43(11):3823–3834CrossRefGoogle Scholar
  17. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(19):3806–3819CrossRefGoogle Scholar
  18. Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20(16):5186–5190CrossRefGoogle Scholar
  19. Pietrobon B, McEachran M, Kitaev V (2009) Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3(1):21–26CrossRefGoogle Scholar
  20. Rycenga M et al (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712CrossRefGoogle Scholar
  21. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol B 10(1):33–56CrossRefGoogle Scholar
  22. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107(26):6269–6275CrossRefGoogle Scholar
  23. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132(6):1825–1827CrossRefGoogle Scholar
  24. Tang B, Xu S, Hou X et al (2013) Shape evolution of silver nanoplates through heating and photoinduction. ACS Appl Mater Interfaces 5(3):646–653CrossRefGoogle Scholar
  25. Taylor LS, Langkilde FW, Zografi G (2001) Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. J Pharm Sci 90(7):888–901CrossRefGoogle Scholar
  26. Toman I, Pinaud BA, Chen Z, Clemens BM, Jaramillo TF, Brongersma ML (2011) Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 11(8):3440–3446CrossRefGoogle Scholar
  27. Wang H, Zheng X, Chen J (2012) Transformation from silver nanoprisms to nanodecahedra in a temperature-controlled photomediated synthesis. J Phys Chem C 116(45):24268–24273CrossRefGoogle Scholar
  28. Willner I, Willner B, Tel-Vered R (2011) Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis 23(1):13–28CrossRefGoogle Scholar
  29. Yang LC, Lai YS, Tsai CM, Kong YT, Lee CI, Huang CL (2012) One-pot synthesis of monodispersed silver nanodecahedra with optimal SERS activities using seedless photo-assisted citrate reduction method. J Phys Chem C 116(45):24292–24300CrossRefGoogle Scholar
  30. Zhang J, Langille MR, Mirkin CA (2011) Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds. Nano Lett 11(6):2495–2498CrossRefGoogle Scholar
  31. Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi JR (2007) Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J Phys Chem C 111(41):14962–14967CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. E. Cardoso-Avila
    • 1
  • J. L. Pichardo-Molina
    • 1
  • C. Murali Krishna
    • 2
  • R. Castro-Beltran
    • 1
  1. 1.Centro de Investigaciones en Optica A.CLeonMexico
  2. 2.Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC)Navi MumbaiIndia

Personalised recommendations