Advertisement

Photoelectrochemical water splitting under visible light over anti-photocorrosive In2O3-coupling ZnO nanorod arrays photoanode

  • Yan Zhang
  • Jinqiu Zhang
  • Mengyan Nie
  • Kai Sun
  • Chunhu Li
  • Jianqiang Yu
Research Paper

Abstract

In2O3 quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In2O3-sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In2O3 could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In2O3 and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In2O3–ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency.

Keywords

In2O3 quantum dots Photoelectrochemical water splitting ZnO nanorod array Thin-film photoanode 

Notes

Acknowledgement

This work was financially supported by the financial supports from the National Foundation of Natural Sciences (No.50878107 and No. 41206067). The China Postdoctoral Science Foundation (No. 214M551869) is also gratefully acknowledged.

Supplementary material

11051_2015_2887_MOESM1_ESM.docx (224 kb)
(Doc 225 kb)

References

  1. Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuators B Chem 138:168. doi: 10.1016/j.snb.2009.02.008
  2. Brinzari V, Lvanov M, Cho BK, Kamei M, Korotcenkov G (2010) Photoconductivity in In2O3 nanoscale thin films: interrelation with chemisorbed-type conductometric response towards oxygen. Sens Actuators B Chem 148:427. doi: 10.1016/j.snb.2010.05.015
  3. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317. doi: 10.1016/S1010-6030(03)00378-2
  4. Fu DY, Han GY, Meng CF (2012) Size-controlled synthesis and photocatalytic degradation properties of nano-sized ZnO nanorods. Mater Lett 72:53. doi: 10.1016/j.matlet.2011.12.047 CrossRefGoogle Scholar
  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  6. Han C, Yang MQ, Weng B, Xu YJ (2014) Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys 16:16891. doi: 10.1039/C4CP02189D CrossRefGoogle Scholar
  7. Hashimoto K, Irie H, Fujishima A (2005) TiO2 Photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269. doi: 10.1143/jjap.44.8269 CrossRefGoogle Scholar
  8. Hu ZY, Zhang JJ, Chen XL, Ren SR, Hao ZH, Geng XH, Zhao Y (2011) Performance of electron beam deposited tungsten doped indium oxide films as anodes in organic solar cells. Sol Energy Mater Sol Cells 95:2173. doi: 10.1016/j.solmat.2011.03.020 CrossRefGoogle Scholar
  9. Hu X, Heng B, Chen X (2012) Ultralong Porous ZnO nanobelt arrays grown directly on fluorine-doped SnO2 substrate for dye-sensitized solar cells. J Power Sources 217:120. doi: 10.1016/j.jpowsour.2012.06.004 CrossRefGoogle Scholar
  10. Iwashina K, Kudo A (2011) Rh-Doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133:13272. doi: 10.1021/ja2050315 CrossRefGoogle Scholar
  11. Jiang J, Zhang X, Sun PB, Zhang LZ (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555. doi: 10.1021/jp205925z CrossRefGoogle Scholar
  12. Kargar A, Jing Y, Kim ST, Riley CT, Pan X, Wang D (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112. doi: 10.1021/nn404838n CrossRefGoogle Scholar
  13. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253. doi: 10.1039/B800489G CrossRefGoogle Scholar
  14. Li Y, Zhang JW (2012) ZnO nanosheets derived from surfactant-directed process: growth mechanism, and application in dye-sensitized solar cells. J Am Ceram Soc 95:1241. doi: 10.1111/j.1551-2916.2011.05030.x CrossRefGoogle Scholar
  15. Li L, Zhai T, Bando Y, Golberg D (2012) Recent progress of one-dimensional zno nanostructured solar cells. Nano Energy 1:91. doi: 10.1016/j.nanoen.2011.10.005 CrossRefGoogle Scholar
  16. Li JT, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu NQ (2014a) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136:8438. doi: 10.1021/ja503508g CrossRefGoogle Scholar
  17. Li XD, Zhang ZM, Chen LL, Liu ZP, Cheng JL, Ni W, Xie EQ, Wang B (2014b) Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production. J Power Sources 269:866. doi: 10.1016/j.jpowsour.2014.07.060 CrossRefGoogle Scholar
  18. Liu ZF, Lei E, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO Seed Layers. Appl Surf Sci 255:6415. doi: 10.1016/j.apsusc.2009.02.030 CrossRefGoogle Scholar
  19. Liu ZY, Bai HW, Xu SP, Sun DD (2011) Hierarchical CuO/ZnO “Corn-like” architecture for photocatalytic hydrogen generation. Int J Hydrog Energy 36:13473. doi: 10.1016/j.ijhydene.2011.07.137 CrossRefGoogle Scholar
  20. Lou YB, Chen JX (2014) Recent developments in one dimensional (1D) nanostructured TiO2 for photoelectrochemical water splitting. Nanosci Nanotechnol Lett 6:361. doi: 10.1166/nnl.2014.1781 CrossRefGoogle Scholar
  21. Luo L, Tao W, Hu XY, Xiao T, Heng B, Huang W, Wang H, Han HW, Jiang Q, Wang JB, Tang YW (2011) Mesoporous F-doped ZnO prism arrays with significantly enhanced photovoltaic performance for dye-sensitized solar cells. J Power Sources 196:10518. doi: 10.1016/j.jpowsour.2011.08.011 CrossRefGoogle Scholar
  22. Maeda K, Domen K (2010) Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater 22:612. doi: 10.1021/cm901917a CrossRefGoogle Scholar
  23. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286. doi: 10.1021/ja0518777
  24. Mclaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540. doi: 10.1021/ja9052703
  25. Moradian R, Shahrokhi M, Amjaian S, Samadi J, Ijadi R (2014) Fe nanochain and nanowires encapsulation in isolated finite thickness zno nanotube and its bundle systems. Eur Phys J Appl Phys 67:20406. doi: 10.1051/epjap/2014130441 CrossRefGoogle Scholar
  26. Navale SC, Ravi V, Mulla IS (2009) Investigations on Ru Doped ZnO: strain calculations and gas sensing study. Sens Actuators B Chem 139:466. doi: 10.1016/j.snb.2009.03.068
  27. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401. doi: 10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  28. Omar A, Abdullah H (2014) Electron transport analysis in zinc oxide-based dye-sensitized solar cells: a review. Renew Sustain Energy Rev 31:149–157. doi: 10.1016/j.rser.2013.11.031 CrossRefGoogle Scholar
  29. Pan K, Dong YZ, Zhou W, Pan QJ, Xie Y, Xie TF, Tian GH, Wang GF (2013) Facile fabrication of hierarchical TiO2 Nanobelt/ZnO Nanorod heterogeneous nanostructure: an efficient photoanode for water splitting. ACS Appl Mater Interfaces 5:8314. doi: 10.1021/am402154k CrossRefGoogle Scholar
  30. Park K, Sato W, Grause G, Kameda T, Yoshioka T (2009) Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochim Acta 493:105. doi: 10.1016/j.tca.2009.03.003 CrossRefGoogle Scholar
  31. Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuators B Chem 96:180. doi: 10.1016/S0925-4005(03)00524-0
  32. Pozina G, Yang LL, Zhao QX, Hultman L, Lagoudakis PG (2010) Size dependent carrier recombination in ZnO nanocrystals. Appl Phys Lett 97:131909. doi: 10.1063/1.3494535 CrossRefGoogle Scholar
  33. Sakthivel S, Neppolian B, Shankar MV (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65. doi: 10.1016/S0927-0248(02)00255-6 CrossRefGoogle Scholar
  34. Shana W, Walukiewicz W, Ager JW, Yu KM, Yuan HB, Xin HP, Cantwell G, Song JJ (2005) Nature of room-temperature photoluminescence in ZnO. Appl Phys Lett 86:191911. doi: 10.1063/1.1923757 CrossRefGoogle Scholar
  35. Steinberg M, Cheng HC (1989) Modern and prospective technologies for hydrogen production from fossil fuels. Int J Hydrog Energy 14:797. doi: 10.1016/0360-3199(89)90018-9 CrossRefGoogle Scholar
  36. Sui MR, Gong P, Gu XQ (2013) Review on one-dimensional ZnO nanostructures for electron field emitters. Front Optoelectron 6:386. doi: 10.1007/s12200-013-0357-3 CrossRefGoogle Scholar
  37. Sun K, Ouyang JY (2012) Polymer solar cells using chlorinated indium tin oxide electrodes with high work function as the anode. Sol Energy Mater Sol Cells 96:238. doi: 10.1016/j.solmat.2011.10.002 CrossRefGoogle Scholar
  38. Sun Y, Yan KP (2014) Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. Int J Hydrog Energy 39:11368. doi: 10.1016/j.ijhydene.2014.05.115
  39. Sun JH, Dong SY, Wang YK, Sun SP (2009) Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J Hazard Mater 172:1520. doi: 10.1016/j.jhazmat.2009.08.022 CrossRefGoogle Scholar
  40. Ting CC, Cheng WL, Lin GC (2011) Structural and opto-electrical properties of the tin-doped indium oxide thin films fabricated by the wet chemical method with different indium starting materials. Thin Solid Films 519:4286. doi: 10.1016/j.tsf.2011.02.004 CrossRefGoogle Scholar
  41. Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Sci Technol 29:841. doi: 10.1021/es00003a037 CrossRefGoogle Scholar
  42. Wang X, Liao MR, Zhong YT, Zheng JY, Tian W, Zhai TY, Zhi CY, Ma Y, Yao JN, Bando Y, Golberg D (2012) ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Adv Mater 24:3421. doi: 10.1002/adma.201201139 CrossRefGoogle Scholar
  43. Wolcott A, Smith WA, Kuykendall TR (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849. doi: 10.1002/adfm.200801363
  44. Xi Y, Wu WZ, Fang H, Hu CG (2012) Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells. J Alloy Compd 529:163. doi: 10.1016/j.jallcom.2012.02.183
  45. Xiang QJ, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575. doi: 10.1021/ja302846n CrossRefGoogle Scholar
  46. Ying YL, Song T, Huang HW, Peng XS (2013) Nanoporous ZnO nanostructures for photocatalytic degradation of organic pollutants. Appl Phys A 110:351. doi: 10.1007/s00339-012-7273-z CrossRefGoogle Scholar
  47. Yu K, Jin ZG, Liu XX, Liu ZF, Fu YN (2007) Synthesis of Size-tunable ZnO nanorod arrays from NH3·H2O/Zn(NO3)2 solutions. Mater Lett 61:2775. doi: 10.1016/j.matlet.2006.10.029 CrossRefGoogle Scholar
  48. Zhang WH, Zhang WD (2012) Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In2O3 microflowers. J Solid State Chem 186:29. doi: 10.1016/j.jssc.2011.11.031 CrossRefGoogle Scholar
  49. Zhang YQ, Heng LP, Jiang L (2014) Chemically controllable fabrication of one-dimensional ZnO nanostructures and their applications in solar cells. J Nanosci Nanotechnol 14:5597. doi: 10.1166/jnn.2014.8862 CrossRefGoogle Scholar
  50. Zhao J, Jin ZG, Li T, Liu XX, Liu ZF (2006) Growth of ZnO Nanorods by the chemical solution method with assisted electrical field. J Am Ceram Soc 89:2654. doi: 10.1111/j.1551-2916.2006.01103.x CrossRefGoogle Scholar
  51. Zhou M, Lou XW, Xie Y (2013) Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8:598. doi: 10.1016/j.nantod.2013.12.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yan Zhang
    • 1
    • 2
  • Jinqiu Zhang
    • 2
  • Mengyan Nie
    • 4
  • Kai Sun
    • 2
  • Chunhu Li
    • 1
  • Jianqiang Yu
    • 2
    • 3
  1. 1.College of Chemistry and Chemical EngineeringOceanology University of ChinaQingdaoChina
  2. 2.Faculty of Chemical Science and EngineeringQingdao UniversityQingdaoChina
  3. 3.Clean Energy Chemistry & MaterialsLanzhou Institute of Chemical Physics, CASLanzhouChina
  4. 4.National Centre for Advanced Tribology at Southampton, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations