Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template

Research Paper


Co–Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co–Pt alloy nanowires was investigated. The less negative deposition potential (−0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co–Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.


Magnetic nanowires Electrodeposition Alumina template Nucleation and growth mechanism 



Ajeet K. Srivastav acknowledges financial support by the DAAD. He is grateful to Prof. L. Schultz to accept him as a DAAD fellow to perform the experiments at IFW Dresden under DAAD/IIT Master-Sandwich-Program. We would like to thank S. Neitsch for the preparation of alumina template. Finally, the authors are thankful to S. Fähler, H. Schlörb and M.S. Chandrasekar for fruitful discussion.


  1. Alam A, Kraczek B, Johnson DD (2010) Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: density-functional theory study of thermal processing effects. Phys Rev B 82:024435CrossRefGoogle Scholar
  2. Arshad MS, Šturm S, Zavašnik J, Espejo AP, Escrig J, Komelj M, McGuiness PJ, Kobe S, Žužek Rožman K (2014) Effect of magnetocrystalline anisotropy on the magnetic properties of electrodeposited Co–Pt nanowires. J Nanopart Res 16:2688CrossRefGoogle Scholar
  3. Bennett JA, Swain GM (2010) Investigating the nucleation and growth of electrodeposited Pt on polycrystalline diamond electrodes. J Electrochem Soc 157:F89–F96CrossRefGoogle Scholar
  4. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, WeinhheimCrossRefGoogle Scholar
  5. Callegaro L, Puppin E, Cavallotti PL, Zangari G (1996) Electroplated, high Hc CoPt films: δM magneto-optical measurements. J Magn Magn Mater 155:190–192CrossRefGoogle Scholar
  6. Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K (2003) Polyol-process-derived CoPt nanoparticles: structural and magnetic properties. J Appl Phys 93:7583CrossRefGoogle Scholar
  7. Cortés M, Gómez E, Vallés E (2013) Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. J Electroanal Chem 689:69–75CrossRefGoogle Scholar
  8. Croll IM (1987) Effect of pH on crystallographic orientation of plated cobalt films. IEEE Trans Magn 23(1):59–61CrossRefGoogle Scholar
  9. Dunning JS, Bennion DN, Newman J (1971) Analysis of porous electrodes with sparingly soluble reactants. J Electrochem Soc 118:1251–1256CrossRefGoogle Scholar
  10. Fasol G (1998) Nanowires: small is beautiful. Science 280:545–546CrossRefGoogle Scholar
  11. Ghidini M, Lodi-Rizzini A, Pernechele C, Solzi M, Pellicelli R, Zangari G, Vavassori P (2010) Growth rate dependence of the extrinsic magnetic properties of electrodeposited CoPt films. J Magn Magn Mater 322:1576–1580CrossRefGoogle Scholar
  12. Gomez H, Riveros G, Ramirez D, Henriquez R, Schrebler R, Marotti R, Dalchiele E (2012) Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. J Solid State Electrochem 16:197–204CrossRefGoogle Scholar
  13. Haehnel V, Fähler S, Schaaf P, Miglierini M, Mickel C, Schultz L, Schlörb H (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58:2330–2337CrossRefGoogle Scholar
  14. Huang YH, Okumura H, Hadjipanayis GC, Weller D (2002) CoPt and FePt nanowires by electrodeposition. J Appl Phys 91:6869CrossRefGoogle Scholar
  15. Ivanov YP, Vázquez M, Chubykalo-Fesenko O (2013) Magnetic reversal modes in cylindrical nanowires. J Phys D Appl Phys 46:485001CrossRefGoogle Scholar
  16. Kim JH, Kim RH, Kwon HS (2008) Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochem Commun 10:1148–1151CrossRefGoogle Scholar
  17. Kumar A, Fähler S, Schlörb H, Leistner K, Schultz L (2006) Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys Rev B 73:064421CrossRefGoogle Scholar
  18. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys 84:6023CrossRefGoogle Scholar
  19. Lin CL, Wu AW, Wang YC, Tseng YC, Tsay JS (2013) Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives. Phys Chem Chem Phys 15:2360–2367CrossRefGoogle Scholar
  20. Majidi H, Van KT, Baxter JB (2012) Nucleation and growth of extremely thin CdSe films electrodeposited from near-neutral electrolytes. J Electrochem Soc 159:D605–D610CrossRefGoogle Scholar
  21. Mallet J, Zhang KY, Chien CL, Eagleton TS, Searson PC (2004) Fabrication and magnetic properties of fcc CoXPt1−X nanowires. Appl Phys Lett 84:3900CrossRefGoogle Scholar
  22. Mallett JJ, Svedberg EB, Sayan S, Shapiro AJ, Wielunski L, Madey TE, Chen PJ, Egelhoff JWF, Moffat TP (2005) Compositional control in electrodeposited CoxPt1−x films. Electrochem Solid State Lett 8:C15–C18CrossRefGoogle Scholar
  23. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRefGoogle Scholar
  24. Maurer F, Brötz J, Karim S, Molares MET, Trautmann C, Fuess H (2007) Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology 18:135709CrossRefGoogle Scholar
  25. Nguyen VD, Vila L, Marty A, Pillet JC, Notin L, Beigné C, Pizzini S, Attané JP (2012) Dimensionality effects on the magnetization reversal in narrow FePt nanowires. Appl Phys Lett 100:252403CrossRefGoogle Scholar
  26. Nielsch K, Muller F, Li AP (2000) Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv Mater 12:582–586CrossRefGoogle Scholar
  27. Okamoto H (2006) Co-Pt Phase Diagram, ASM Alloy Phase Diagrams Center, Villars P, editor-in-chief; Okamoto H, Cenzual K, section editors; ASM International, Materials Park, OHGoogle Scholar
  28. Pan H, Liu BH, Yi JB, Poh C, Lim S, Ding J, Feng YP, Huan CHA, Lin JY (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRefGoogle Scholar
  29. Pattanaik G, Zangari G (2006) Morphology and magnetic properties of Co-rich Co-Pt thin films electrodeposited on Cr seed layers. J Electrochem Soc 153:C6–C10CrossRefGoogle Scholar
  30. Riveros G, Green S, Cortes A, Gómez H, Marotti RE, Dalchiele EA (2006) Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology 17:561–570CrossRefGoogle Scholar
  31. Rosa WO, Vivas LG, Pirota KR, Asenjo A, Vázquez M (2012) Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays. J Magn Magn Mater 324:3679–3682CrossRefGoogle Scholar
  32. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889CrossRefGoogle Scholar
  33. Schlörb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fähler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247:2364–2379CrossRefGoogle Scholar
  34. Shamaila S, Sharif R, Chen JY, Liu HR, Han XF (2009) Magnetic field annealing dependent magnetic properties of Co90Pt10 nanowire arrays. J Magn Magn Mater 321:3984–3989CrossRefGoogle Scholar
  35. Shin S, Kong BH, Kim BS, Kim KM, Cho HK, Cho HH (2011) Over 95 % of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition. Nanoscale Res Lett 6:467CrossRefGoogle Scholar
  36. Shiomi S, Okazawa H, Nakakita T, Kobayashi T, Masuda M (1993) Magnetic properties CoPt alloy films sputtered on Pt underlayers. Jpn J Appl Phys 32((2) 3A):L315–L317CrossRefGoogle Scholar
  37. Simm AO, Ji X, Banks CE, Hyde ME, Compton RG (2006) AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. Chemphyschem 7:704–709CrossRefGoogle Scholar
  38. Skomski R (2003) Nanomagnetics. J Phys 15:R841–R896Google Scholar
  39. Sousa CT, Leitao DC, Proenca MP, Ventura J, Pereira AM, Araujo JP (2014) Nanoporous alumina as templates for multifunctional applications. Appl Phys Rev 1:031102CrossRefGoogle Scholar
  40. Srivastav AK, Shekhar R (2014) Crystal anisotropy induced temperature dependent magnetization in cobalt nanowires electrodeposited within alumina template. J Magn Magn Mater 349:21–26CrossRefGoogle Scholar
  41. Tian M, Wang J, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRefGoogle Scholar
  42. Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405CrossRefGoogle Scholar
  43. Weller D, Doerner MF (2000) Extremely high-density longitudinal magnetic recording media. Annu Rev Mater Sci 30:611–644CrossRefGoogle Scholar
  44. Wen X, Zhang XX, Zhang Y, Yue GH, Wang JB, Wang ZW, Peng DL (2013) Structure and magnetic properties of the Co x Pt100−x nanowire arrays. Appl Phys A 112:869–875CrossRefGoogle Scholar
  45. Xu X, Ghidini M, Zangari G (2012) The influence of hypophosphite additions on the electrodeposition of Co-rich Co-Pt alloys, and on their structural and magnetic properties. J Electrochem Soc 159:D240–D245CrossRefGoogle Scholar
  46. Yang Y, Varghese B, Tan HK, Wong SK, Piramanayagam SN (2014) Microstructure investigations of hcp phase CoPt thin films with high coercivity. J Appl Phys 115:083910CrossRefGoogle Scholar
  47. Ye Z, Liu H, Schultz I, Wu W, Naugle DG, Lyuksyutov I (2008) Template-based fabrication of nanowire–nanotube hybrid arrays. Nanotechnology 19:325303CrossRefGoogle Scholar
  48. Zana I, Zangari G (2004) Magnetic properties of electrodeposited Co–Pt thin films with very high perpendicular magnetic anisotropy. J Magn Magn Mater 272–276:1698–1699CrossRefGoogle Scholar
  49. Zhang XY, Zhang LD, Lei Y, Zhao LX, Mao YQ (2001) Fabrication and characterization of highly ordered Au nanowire arrays. J Mater Chem 11:1732–1734CrossRefGoogle Scholar
  50. Žužek Rožman K, Krause A, Leistner K, Fähler S, Schultz L, Schlörb H (2007) Electrodeposition and hard magnetic properties of Co–Pt films in comparison to Fe–Pt films. J Magn Magn Mater 314:116–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations