Skip to main content

Advertisement

Log in

Magnetic La1−x Sr x MnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles of the La1−x Sr x MnO3 perovskite phase (x = 0.20–0.45) were synthesized by a sol–gel method followed by thermal and mechanical treatments. The particles were coated with a uniform silica shell, and differential centrifugation yielded a product with high colloidal stability in water. X-ray powder diffraction (XRD) data showed that the mechanical processing did not affect the lattice parameters of the magnetic cores but only reduced their mean size d XRD. The magnetic properties of the bare particles were mainly controlled by the chemical composition and were also affected by the size of the particles. Subsequent silica coating led to an effective decrease in magnetization. Relaxometry measurements were focused primarily on colloids using magnetic cores of the same size (d XRD ≈ 20 nm) and different compositions, and coated with a shell measuring approximately 20 nm in thickness. The exceedingly high transverse relaxivities [r 2(20 °C) = 290–430 s−1 mmol−1 L at B 0 = 0.5 T] of the samples exhibited pronounced temperature dependence and correlated very well with the magnetic data. Additional samples differing in the size of the cores and silica shell thickness were prepared as well to analyze the effect of the particles on 1H transverse relaxation. The results suggest that the dominant regime of transverse relaxation is the static dephasing regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaro E, Barker GJ (2006) Study design in MRI: basic principles. Brain Cogn 60:220–232. doi:10.1016/j.bandc.2005.11.009

    Article  Google Scholar 

  • Berková Z, Jirák D, Zacharovová K, Lukeš I, Kotková Z, Kotek J, Kačenka M, Kaman O, Řehoř I, Hájek M, Saudek F (2013) Gadolinium- and manganite-based contrast agents with fluorescent probes for both magnetic resonance and fluorescence imaging of pancreatic islets: a comparative study. ChemMedChem 8:614–621. doi:10.1002/cmdc.201200439

    Article  Google Scholar 

  • Binder K (1972) Statistical mechanics of finite 3-dimensional ising models. Physica 62:508–526. doi:10.1016/0031-8914(72)90237-6

    Article  Google Scholar 

  • Brooks RA (2002) T-2-shortening by strongly magnetized spheres: a chemical exchange model. Magn Reson Med 47:388–391. doi:10.1002/Mrm.10064

    Article  Google Scholar 

  • Carroll MRJ, Woodward RC, House MJ, Teoh WY, Amal R, Hanley TL, St Pierre TG (2010) Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology 21:035103. doi:10.1088/0957-4484/21/3/035103

    Article  Google Scholar 

  • Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Jorgensen JD, Short S (2003) Structural and magnetic phase diagrams of La1−xSrxMnO3 and Pr1−ySryMnO3. Phys Rev B 67:094431. doi:10.1103/PhysRevB.67.094431

    Article  Google Scholar 

  • Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJM (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR Biomed 26:766–780. doi:10.1002/nbm.2909

    Article  Google Scholar 

  • Gillis P, Roch A, Brooks RA (1999) Corrected equations for susceptibility-induced T2-shortening. J Magn Reson 137:402–407. doi:10.1006/jmre.1998.1691

    Article  Google Scholar 

  • Gillis P, Moiny F, Brooks RA (2002) On T-2-shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med 47:257–263. doi:10.1002/Mrm.10059

    Article  Google Scholar 

  • Glover P, Mansfield P (2002) Limits to magnetic resonance microscopy. Rep Prog Phys 65:1489. doi:10.1088/0034-4885/65/10/203

    Article  Google Scholar 

  • Haghniaz R, Bhayani KR, Umrani RD, Paknikar KM (2013) Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv 3:18489–18497. doi:10.1039/c3ra40836a

    Article  Google Scholar 

  • Jirák Z, Hadová E, Kaman O, Knížek K, Maryško M, Pollert E, Dlouhá M, Vratislav S (2010) Ferromagnetism versus charge ordering in the Pr0.5Ca0.5MnO3 and La0.5Ca0.5MnO3 nanocrystals. Phys Rev B 81:024403. doi:10.1103/PhysRevB.81.024403

    Article  Google Scholar 

  • Kačenka M, Kaman O, Kotek J, Falteisek L, Černý J, Jirák D, Herynek V, Zacharovová K, Berková Z, Jendelová P, Kupčik J, Pollert E, Veverka P, Lukeš I (2011) Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. J Mater Chem 21:157–164. doi:10.1039/c0jm01258k

    Article  Google Scholar 

  • Kačenka M, Kaman O, Jirák Z, Maryško M, Veverka P, Veverka M, Vratislav S (2015) The magnetic and neutron diffraction studies of La1−xSrxMnO3 nanoparticles prepared via molten salt synthesis. J Solid State Chem 221:364–372. doi:10.1016/j.jssc.2014.10.024

    Article  Google Scholar 

  • Kaman O (2009) Preparation, structure and properties of hybrid nanoparticles with perovskite and spinel type cores. Dissertation, Charles University, Prague

  • Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knížek K, Maryško M, Kašpar P, Klementová M, Grunwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology 20:094431. doi:10.1088/0957-4484/20/27/275610

    Article  Google Scholar 

  • Kaman O, Veverka P, Jirák Z, Maryško M, Knížek K, Veverka M, Kašpar P, Burian M, Šepelák V, Pollert E (2011) The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles. J Nanopart Res 13:1237–1252. doi:10.1007/s11051-010-0117-x

    Article  Google Scholar 

  • Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34:227–233. doi:10.1002/mrm.1910340214

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  • Mansfield P (2004) Snapshot magnetic resonance imaging (nobel lecture). Angew Chem Int Ed 43:5456–5464. doi:10.1002/anie.200460078

    Article  Google Scholar 

  • Maryško M, Pollert E, Kaman O, Veverka P, Jirák Z (2010) Manganese perovskite nanoparticles and the downturn of inverse susceptibility above the Curie temperature. Acta Phys Pol A 118:792–793

    Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691. doi:10.1063/1.1716296

    Article  Google Scholar 

  • Merbach AS, Helm L, Tóth É (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

    Book  Google Scholar 

  • Mitchell JF, Argyriou DN, Potter CD, Hinks DG, Jorgensen JD, Bader SD (1996) Structural phase diagram of La1−xSrxMnO3+delta: relationship to magnetic and transport properties. Phys Rev B 54:6172–6183. doi:10.1103/PhysRevB.54.6172

    Article  Google Scholar 

  • Pollert E, Knížek K, Maryško M, Kašpar P, Vasseur S, Duguet E (2007) New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 316:122–125. doi:10.1016/j.jmmm.2007.02.031

    Article  Google Scholar 

  • Roch A, Gossuin Y, Muller RN, Gillis P (2005) Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magn Magn Mater 293:532–539. doi:10.1016/j.jmmm.2005.01.070

    Article  Google Scholar 

  • Rong CB, Li DR, Nandwana V, Poudyal N, Ding Y, Wang ZL, Zeng H, Liu JP (2006) Size-dependent chemical and magnetic ordering in L1(0)-FePt nanoparticles. Adv Mater 18:2984–2988. doi:10.1002/adma.200601904

    Article  Google Scholar 

  • Roy S, Dubenko I, Edorh DD, Ali N (2004) Size induced variations in structural and magnetic properties of double exchange La0.8Sr0.2MnO3−delta nano-ferromagnet. J Appl Phys 96:1202–1208. doi:10.1063/1.1760230

    Article  Google Scholar 

  • Rybicki A, Sikora M, Kapusta C, Riedi PC, Jirák Z, Knížek K, Maryško M, Pollert E, Veverka P (2006) A 55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles. Phys Status Solidi C 3:155–158. doi:10.1002/pssc.200562483

    Article  Google Scholar 

  • Trachtová S, Kaman O, Španová A, Veverka P, Pollert E, Rittich B (2011) Silica-coated La0.75Sr0.25MnO3 nanoparticles for magnetically driven DNA isolation. J Sep Sci 34:3077–3082. doi:10.1002/jssc.201100442

    Article  Google Scholar 

  • Uecker M, Zhang S, Voit D, Karaus A, Merboldt KD, Frahm J (2010) Real-time MRI at a resolution of 20 ms. NMR Biomed 23:986–994. doi:10.1002/nbm.1585

    Article  Google Scholar 

  • Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315–320. doi:10.1016/j.jmmm.2005.09.026

    Article  Google Scholar 

  • Vuong QL, Berret J-F, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 1:502–512. doi:10.1002/adhm.201200078

    Article  Google Scholar 

  • Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763. doi:10.1002/mrm.1910320610

    Article  Google Scholar 

  • Žvátora P, Veverka M, Veverka P, Knížek K, Závěta K, Pollert E, Král V, Goglio G, Duguet E, Kaman O (2013) Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites. J Solid State Chem 204:373–379. doi:10.1016/j.jssc.2013.06.006

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant Agency of the Czech Republic through the project P108/11/0807 and by the Ministry of Industry and Trade of the Czech Republic through the project FR-TI3/521. Measurements performed by E.S. at Magnetism and Low Temperatures Laboratories (MLTL) were supported by the project LM2011025, part of the Czech Research Infrastructures Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veverka, P., Kaman, O., Kačenka, M. et al. Magnetic La1−x Sr x MnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation. J Nanopart Res 17, 33 (2015). https://doi.org/10.1007/s11051-014-2848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2848-6

Keywords

Navigation