Skip to main content

Advertisement

Log in

Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  Google Scholar 

  • Arvizo RR, Miranad OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10:2543–2548

    Article  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–56

    Article  Google Scholar 

  • Chaney LK, Jacobson BS (1983) Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem 258:10062–10072

    Google Scholar 

  • Chang JS, Chang KL, Hwang DF, Kong ZL (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    Article  Google Scholar 

  • Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  Google Scholar 

  • Halas NJ (2008) Nanoscience under glass: the versatile chemistry of silica nanostructures. ACS Nano 2:179–183

    Article  Google Scholar 

  • Kim YJ, Yu MR, Park HO, Yang SI (2010) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6:337–344

    Google Scholar 

  • Kong B, Seog JH, Graham LM, Lee SB (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6:929–941

    Article  Google Scholar 

  • Kovalenko GA, Shitova NB, Sokolovskii VD (1981) Immobilization of oxyreductases on inorganic supports based on alumina. Immobilization of lactate dehydrogenase on alumina by adsorption. Biotechnol Bioeng 23:1721–1734

    Article  Google Scholar 

  • Kuhlbusch TAJ, Asbach C, Fissan H, Goehler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22

    Article  Google Scholar 

  • Kumar P, Pirjola L, Ketzel M, Harrison RM (2013) Nanoparticle emissions from 11 non-vehicle exhaust sources—a review. Atmos Environ 67:252–277

    Article  Google Scholar 

  • Lee H, Larson RG (2009) Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes. Molecules 14:423–438

    Article  Google Scholar 

  • Leroueil PR, Berry SA, Duthie K, Han G, Rotello VM, McNerny DQ, Baker JR, Orr BG, Holl MM (2008) Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 8:420–424

    Article  Google Scholar 

  • Lin J, Alexander-Katz A (2013) Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano 7:10799–10808

    Article  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  Google Scholar 

  • Madani F, Lindberg S, Langel U, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  Google Scholar 

  • Mathias RA, Chen YS, Goode RJ, Kapp EA, Mathivanan S, Moritz RL, Zhu HJ, Simpson RJ (2011) Tandem application of cationic colloidal silica and Triton X-114 for plasma membrane protein isolation and purification: towards developing an MDCK protein database. Proteomics 11:1238–1253

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  Google Scholar 

  • Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    Article  Google Scholar 

  • Rahbar AM, Fenselau C (2004) Integration of Jacobson’s Pellicle Method into proteomic strategies for plasma membrane proteins. J Proteome Res 3:1267–1277

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464

    Article  Google Scholar 

  • Robinson JM, Ackerman WET, Tewari AK, Kniss DA, Vandre DD (2009) Isolation of highly enriched apical plasma membranes of the placental syncytiotrophoblast. Anal Biochem 387:87–94

    Article  Google Scholar 

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613

    Article  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  Google Scholar 

  • Stepnik M, Arkusz J, Smok-Pieniążek A, Bratek-Skicki A, Salvati A, Lynch I, Dawso KA, Gromadzińska J, De Jong WH, Rydzynski K (2012) Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles. Toxicol Appl Pharmacol 263:89–101

    Article  Google Scholar 

  • Wang L, Zhao W, Tan W (2008) Bioconjugated silica nano particles: development and applications. Nano Res 1:99–115

    Article  Google Scholar 

  • Wang J, Asbach C, Fissan H, Hulser T, Kaminski H, Kuhlbusch TAJ, Pui DYH (2012) Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilotscale facility. J Nanopart Res 14:759–767

    Article  Google Scholar 

  • Yoon D, Woo D, Kim JH, Kim MK, Kim T, Hwang ES, Baik S (2011) Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium. J Nanopart Res 13:2543–2551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Bok Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seog, J.H., Kong, B., Kim, D. et al. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7). J Nanopart Res 17, 6 (2015). https://doi.org/10.1007/s11051-014-2823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2823-2

Keywords

Navigation