Stability optimisation of molecular electronic devices based on  nanoelectrode–nanoparticle bridge platform in air and different storage liquids

Research Paper


The long-term stability of metal nanoparticle–molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule–Au nanoparticle (AuNP) junctions themselves with the molecule being  1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol–NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT.


Nanoelectronics Nanoelectrodes Molecular electronics Shelf-life Storage conditions 



The authors thank Professor Maria Strømme and Dr. Ken Welch for usage of their probe station. For financial support, we are grateful to Uppsala University for supporting the U3MEC KoF initiative on molecular electronics and to the Swedish Research Council (Vetenskapsrådet), to the Wenner-Gren Foundations, and the Göran Gustafsson Foundation for postdoctoral fellowships to A.W, and Mirpur University of Science and Technology, Mirpur AJK, Pakistan, for partial financial support of S. H. M. J.

Supplementary material

11051_2014_2811_MOESM1_ESM.docx (793 kb)
The detailed procedure to measure gap spacing in nanoelectrodes platform from SEM images Resistance of 1,8-octanedithiol based  nanoelectrode–nanoparticle bridge platform molecular electronic devices over the period of 4 weeks organic and inorganic solvents (DOCX 792 kb)


  1. Akkerman HB, Bd Boer (2008) Electrical conduction through single molecules and self-assembled monolayers. J Phys 20(1):013001Google Scholar
  2. Akkerman HB, Kronemeijer AJ, Harkema J, van Hal PA, Smits ECP, de Leeuw DM, Blom PWM (2010) Stability of large-area molecular junctions. Org Electron 11(1):146–149CrossRefGoogle Scholar
  3. Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272(5266):1323–1325. doi: 10.1126/science.272.5266.1323 CrossRefGoogle Scholar
  4. Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110(17):5687–5692CrossRefGoogle Scholar
  5. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283CrossRefGoogle Scholar
  6. Bezryadin A, Dekker C, Schmid G (1997) Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett 71(9):1273–1275CrossRefGoogle Scholar
  7. Blom T, Welch K, Stromme M, Coronel E, Leifer K (2007) Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling. Nanotechnology 18(28):285301CrossRefGoogle Scholar
  8. Brown AR, Pomp A, Hart CM, de Leeuw DM (1995) Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators. Science 270(5238):972–974. doi: 10.1126/science.270.5238.972 CrossRefGoogle Scholar
  9. Cui XD, Zarate X, Tomfohr J, Sankey OF, Primak A, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2002) Making electrical contacts to molecular monolayers. Nanotechnology 13(1):5CrossRefGoogle Scholar
  10. Diez-Perez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1(8):635–641CrossRefGoogle Scholar
  11. Duan S, Wu D-Y, Xu X, Luo Y, Tian Z-Q (2010) Structures of water molecules adsorbed on a gold electrode under negative potentials. J Phys Chem C 114(9):4051–4056CrossRefGoogle Scholar
  12. Fabrizio ED, Grella L, Gentili M, Baciocchi M, Mastrogiacomo L, Morales P (1997) Fabrication of 5 nm resolution electrodes for molecular devices by means of electron beam lithography. Jpn J Appl Phys 36:L70–L72CrossRefGoogle Scholar
  13. González MT, Wu S, Huber R, van der Molen SJ, Schönenberger C, Calame M (2006) Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett 6(10):2238–2242CrossRefGoogle Scholar
  14. Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445(7126):414–417CrossRefGoogle Scholar
  15. Heath JR (2009) Molecular electronics. Annu Rev Mater Res 39(1):1–23CrossRefGoogle Scholar
  16. Jafri SHM, Blom T, Leifer K, Strømme M, Löfås H, Grigoriev A, Ahuja R, Welch K (2010) Assessment of a nanoparticle bridge platform for molecular electronics measurements. Nanotechnology 21(43):435204CrossRefGoogle Scholar
  17. Jafri SHM, Blom T, Wallner A, Welch K, Strømme M, Ottosson H, Leifer K (2011) Control of junction resistances in molecular electronic devices fabricated by FIB. Microelectron Eng 88(8):2629–2631CrossRefGoogle Scholar
  18. Jafri SHM, Lofas H, Fransson J, Blom T, Grigoriev A, Wallner A, Ahuja R, Ottosson H, Leifer K (2013) Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy. Nanoscale 5(11):4673–4677CrossRefGoogle Scholar
  19. Joachim C, Gimzewski JK (1995) Analysis of low-voltage I(V) characteristics of a single C 60 molecule. Europhys Lett 30(7):409CrossRefGoogle Scholar
  20. Kamenetska M, Koentopp M, Whalley AC, Park YS, Steigerwald ML, Nuckolls C, Hybertsen MS, Venkataraman L (2009) Formation and evolution of single-molecule junctions. Phys Rev Lett 102(12):126803CrossRefGoogle Scholar
  21. Kostyrko T, García-Suárez VM, Lambert CJ, Bułka BR (2010) Current rectification in molecular junctions produced by local potential fields. Phys Rev B 81(8):085308CrossRefGoogle Scholar
  22. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170CrossRefGoogle Scholar
  23. Na J-S, Ayres J, Chandra KL, Chu C, Gorman CB, Parson GN (2007) Conduction mechanisms and stability of single molecule nanoparticle/molecule/nanoparticle junctions. Nanotechnology 18(3):035203CrossRefGoogle Scholar
  24. Ozoemena K, Westbroek P, Nyokong T (2001) Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards l-cysteine detection. Electrochem Commun 3(9):529–534CrossRefGoogle Scholar
  25. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278(5336):252–254CrossRefGoogle Scholar
  26. Reed MA, Zhou C, Deshpande MR, Muller CJ, Burgin TP, Jones L, Tour JM (1998) The electrical measurement of molecular junctions. Ann NY Acad Sci 852(1):133–144CrossRefGoogle Scholar
  27. Rieley H, Price NJ, Smith TL, Yang S (1996) Photo-oxidation and photo-reduction in alkylthiol monolayers self-assembled on gold. J Chem Soc, Faraday Trans 92(19):3629–3634CrossRefGoogle Scholar
  28. Shimoni N, Wolovelsky M, Biham O, Millo O (1997) Surface electromigration and self-diffusion on gold films studied via scanning tunneling microscopy. Surf Sci 380(1):100–104CrossRefGoogle Scholar
  29. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Measurement of the conductance of a hydrogen molecule. Nature 419(6910):906–909CrossRefGoogle Scholar
  30. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462(7276):1039–1043CrossRefGoogle Scholar
  31. Strachan DR, Smith DE, Fischbein MD, Johnston DE, Guiton BS, Drndić M, Bonnell DA, Johnson AT (2006) Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Lett 6(3):441–444CrossRefGoogle Scholar
  32. Wallner A, Jafri SHM, Blom T, Gogoll A, Leifer K, Baumgartner J, Ottosson H (2011) Formation and NMR spectroscopy of ω-Thiol protected α, ω-Alkanedithiol-coated gold nanoparticles and their usage in molecular charge transport junctions. Langmuir 27(14):9057–9067CrossRefGoogle Scholar
  33. Willey TM, Vance AL, van Buuren T, Bostedt C, Terminello LJ, Fadley CS (2005) Rapid degradation of alkanethiol-based self-assembled monolayers on gold in ambient laboratory conditions. Surf Sci 576(1–3):188–196CrossRefGoogle Scholar
  34. Xi M, Yang MX, Jo SK, Bent BE, Stevens P (1994) Benzene adsorption on Cu(111): formation of a stable bilayer. J Chem Phys 101(10):9122–9131CrossRefGoogle Scholar
  35. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223. doi: 10.1126/science.1087481 CrossRefGoogle Scholar
  36. Zhang Y, Lin L, Feng Z, Zhou J, Lin Z (2009) Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design. Electrochim Acta 55(1):265–270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The Ångström Laboratory, Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of Electrical EngineeringMirpur University of Science and TechnologyMirpurPakistan
  3. 3.The Biomedical Centre, Department of ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations