Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

  • R. Casta
  • J. -P. Champeaux
  • P. Moretto-Capelle
  • M. Sence
  • P. Cafarelli
Research Paper


In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.


Nanoparticle X-ray Irradiation Gold Radiotherapy Electron Photon 


  1. Agostinelli S et al (2003) Geant4 a simulation toolkit. Nucl Inst Methods Phys Res Sect A 506(3):250–303CrossRefGoogle Scholar
  2. Allison J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278CrossRefGoogle Scholar
  3. Ashley JC (1990) Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter. J Electron Spectroscd Relat Phenom 50:323–334CrossRefGoogle Scholar
  4. Bearden JA, Burr AF (1967) Reevaluation of X-ray atomic energy levels. Rev Mod Phys 39:125CrossRefGoogle Scholar
  5. Berger MJ, Chang J, Coursey JS, Zucker DS (2005) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3)Google Scholar
  6. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) Xcom: photon cross sectiondatabase (version 1.5)Google Scholar
  7. Bhalla CP (1970) Radiative transition probabilities for vacancies in M sub-shells. J Phys B 3:916CrossRefGoogle Scholar
  8. Bhalla CP (1972) Nonrelativistic fluorescence yields for the 3p and the 3d shells. Phys Rev A 6(4):1409CrossRefGoogle Scholar
  9. Brun E, Cloutier P, Sicard-Roselli C, Fromm M, Sanche L (2009) Damage induced to DNA by low-energy (0–30 eV) electrons under vacuum and atmospheric conditions. J Phys Chem B 113(29):10008–10013CrossRefGoogle Scholar
  10. Butterworth KT, Wyer JA, Brennan-Fournet M, Latimer CJ, Shah MB, Currell FJ, Hirst DG (2008) Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat Res 170(3):381–387CrossRefGoogle Scholar
  11. Cardona M, Ley L (1978) Photoemission in solids I: general principles. Springer, BerlinCrossRefGoogle Scholar
  12. Carter Joshua D, Cheng Neal N, Suarez George D, Guo Ting (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111(40):11622–11625CrossRefGoogle Scholar
  13. Casta R, Champeaux J-P, Cafarelli P, Moretto-Capelle P, Sence M (2014) Model for electron emission of high-z radio-sensitizing nanoparticle irradiated by X-rays. J Nanopart Res 16:2480CrossRefGoogle Scholar
  14. Casta R, Champeaux J-P, Sence M, Moretto-Capelle P, Cafarelli P, Amsellem A, Sicard-Roselli C (2014) Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation : experiment and simulations. J Nanopart Res 16:1–10Google Scholar
  15. Chen Mau Hsiung, Crasemann Bernd, Mark Hans (1979) Relativistic radiationless transition probabilities for atomic K- and L-shells. At Data Nucl Data Tables 24:13–37CrossRefGoogle Scholar
  16. Chithrani Devika B, Jelveh Salomeh, Jalali Farid, van Prooijen Monique, Allen Christine, Bristow Robert G, Hill Richard P, Jaffray David A (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728CrossRefGoogle Scholar
  17. Chow James CL, Leung Michael K K, Jaffray David A (2012) Monte carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol 57:3323–3331CrossRefGoogle Scholar
  18. Cullen DE et al (1991) Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), Z = 1–100, UCRL-50400, vol 30. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  19. Dunford RW, Kanter EP, Krässig B, Southworth SH, Young L, Mokler PH, Stöhlker Th, Cheng S, Kochur AG, Petrov ID (2006) Coster–Kronig transition probability f23 in gold atoms. Phys Rev A 74:062502CrossRefGoogle Scholar
  20. Fuggle JC, Mrtensson N (1980) Core-level binding energies in metals. J Electron Spectrosc Relat Phenom 21:275CrossRefGoogle Scholar
  21. Garnica-Garza HM (2013) Microdosimetry of X-ray irradiated gold nanoparticles. Radiat Protect Dosim 155:59–63CrossRefGoogle Scholar
  22. Guatelli S, Mantero A, Mascialino B, Nieminen P, Pia MG (2007) Geant4 atomic relaxation. IEEE Trans Nucl Sci 54(3):585–593CrossRefGoogle Scholar
  23. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309CrossRefGoogle Scholar
  24. Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76(10):1357–1364CrossRefGoogle Scholar
  25. Jopson RC, Mark Hans, Swift CD, Williamson MA (1965) M-shell fluorescence yields of bismuth, lead, gold, and osmium. Phys Rev 137:A1353CrossRefGoogle Scholar
  26. Kennedy Laura C, Bickford Lissett R, Lewinski Nastassja A, Coughlin Andrew J, Day Emily S, West Jennifer L (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 17:169–183CrossRefGoogle Scholar
  27. Larkins FP, Lubenfeld A (1977) The N45–N67 Coster–Kronig transitions of gold. J Electron Spectrosc Relat Phenom 12:111–118CrossRefGoogle Scholar
  28. Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, Pignol JP (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56(15):4631–4647CrossRefGoogle Scholar
  29. Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, Reilly RM, Pignol J-P (2013) A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys Med Biol 58:3075–3087CrossRefGoogle Scholar
  30. Mau Hsiung Chen, Crasemann Bernd, Mark Hans (1983) Radiationless transitions to atomic M1, M2, M3 shells. Phys Rev A 27:2989–2994CrossRefGoogle Scholar
  31. McGuire Eugene J (1971) Atomic L-shell Coster–Kronig, Auger, and radiative rates and fluorescence yields for Na–Th. Phys Rev A 3:587CrossRefGoogle Scholar
  32. McGuire Eugene J (1972) Atomic M-shell Coster–Kronig, Auger, and radiative rates, and fluorescence yields for Ca–Th. Phys Rev A 5:1043–1047Google Scholar
  33. McGuire Eugene J (1972) Atomic N-shell Coster–Kronig, Auger, and radiative rates, and fluorescence yields for Ca–Th. Phys Rev A 5:1043CrossRefGoogle Scholar
  34. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, Prise KM, Hirst DG, Currell FJ (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18. doi: 10.1038/srep00018 CrossRefGoogle Scholar
  35. Nyholm Ralf, Helenelund Kurt, Johansson Brje (1977) Transition from bandlike to quasiatomic behavior in the \(N_{67}O_{45}O_{45}\) auger spectra of iridium, platinum, and gold. Phys Rev B 34(2):111–118Google Scholar
  36. Sampaio JM, Parente F, Indelicato P, Marques JP (2013) Relativistic calculations of M-shell decay rates and yields in Zn, Cd and Hg. J Phys B 46(6):065001CrossRefGoogle Scholar
  37. Sanche Léon (2009) Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer. Chem Phys Lett 474:1–6CrossRefGoogle Scholar
  38. Sharma R, Chen CJ (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11(3):671–689CrossRefGoogle Scholar
  39. Walters DL, Bhalla CP (1971) Nonrelativistic auger rates, X-ray rates, and fluorescence yields for the 2p shell. Phys Rev A 4:2164CrossRefGoogle Scholar
  40. Wright DH (2012) Physics reference manual—geant4 9.6.0Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • R. Casta
    • 1
  • J. -P. Champeaux
    • 1
  • P. Moretto-Capelle
    • 1
  • M. Sence
    • 1
  • P. Cafarelli
    • 1
  1. 1.Laboratoire Collisions Agrégats Réactivité, IRSAMC, CNRS, UMR 5589Université de Toulouse, UPSToulouseFrance

Personalised recommendations