Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells

Research Paper


Recently, many studies reported that nanosized copper particles (nano-Cu, the particle size was around 15–30 nm), one of the nanometer materials, could induce nephrotoxicity. To detect the effect of nano-Cu on mesangial cells (MCs), and investigate the underlying mechanism, MCs were treated with different concentrations of nano-Cu (1, 10, and 30 μg/mL) to determine the oxidative stress and apoptotic changes. It was revealed that nano-Cu could induce a decreased viability in MCs together with a significant increase in the number of apoptotic cells by using cell counting kit-8 assay and flow cytometry. The apoptotic morphological changes induced by nano-Cu in MCs were demonstrated by Hochest33342 staining. Results showed that nano-Cu induced the nuclear fragmentation in MCs. Meanwhile, nano-Cu significantly increased the levels of reactive oxygen species, especially increased the levels of H2O2. It also decreased the activity of total SOD enzyme. In addition, when pre-treated with N-(2-mercaptopropionyl)-glycine, the cell apoptosis induced by nano-Cu was significantly decreased. These results suggest that oxidative stress plays an important role in the nano-Cu toxicity in MCs, which may be the main mechanism of nano-Cu-induced nephrotoxicity.


Apoptosis Mesangial cells Nanosized copper particles Oxidative stress Reactive oxygen species (ROS) Health and environmental effects 



This work was supported by Grant from the National Natural Science Foundation of China (31271074) and the National Basic Research Program of China (2011CB944003).


  1. Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248. doi: 10.1038/424246a CrossRefGoogle Scholar
  2. Chan J et al (2011) In vitro toxicity evaluation of 25-nm anatase TiO2 nanoparticles in immortalized keratinocyte cells. Biol Trace Elem Res 144:183–196. doi: 10.1007/s12011-011-9064-3 CrossRefGoogle Scholar
  3. Chen Z et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120. doi: 10.1016/j.toxlet.2005.10.003 CrossRefGoogle Scholar
  4. Chen G et al (2013) TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci. doi: 10.1242/jcs.126714 Google Scholar
  5. Chhabra R et al (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20:485201. doi: 10.1088/0957-4484/20/48/485201 CrossRefGoogle Scholar
  6. Deng L et al (2008) Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385. doi: 10.1128/JVI.00395-08 CrossRefGoogle Scholar
  7. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5. doi: 10.1093/toxsci/kfh041 CrossRefGoogle Scholar
  8. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663. doi: 10.1517/14712598.3.4.655 CrossRefGoogle Scholar
  9. Gomes SI, Novais SC, Gravato C, Guilhermino L, Scott-Fordsmand JJ, Soares AM, Amorim MJ (2012) Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). Nanotoxicology 6:134–143. doi: 10.3109/17435390.2011.562327 CrossRefGoogle Scholar
  10. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186. doi: 10.1021/es071235e CrossRefGoogle Scholar
  11. Guo K, Pan Q, Wang L, Fang S (2002) Nano-scale copper-coated graphite as anode material for lithium-ion batteries. J Appl Electrochem 32:679–685. doi: 10.1023/A:1020178121795 CrossRefGoogle Scholar
  12. Han JY, Yu ZT, Zhou L (2009) The effects of different hydroxyapatite/TiO2 composite coatings on protein expression of osteoblast. In: materials science forum, 2009. Trans Tech Publ, pp 1104–1108. doi:10.4028/
  13. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J Nanobiotechnol 2:12CrossRefGoogle Scholar
  14. Kalidindi SB, Sanyal U, Jagirdar BR (2008) Nanostructured Cu and Cu@ Cu2O core shell catalysts for hydrogen generation from ammonia–borane. Phys Chem Chem Phys 10:5870–5874CrossRefGoogle Scholar
  15. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol Lett 188:112–118. doi: 10.1016/j.toxlet.2009.03.014 CrossRefGoogle Scholar
  16. Kim JS et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. doi: 10.1093/toxsci/kfj027 CrossRefGoogle Scholar
  17. Kiyomoto H, Rafiq K, Mostofa M, Nishiyama A (2008) Possible underlying mechanisms responsible for aldosterone and mineralocorticoid receptor-dependent renal injury. J Pharmacol Sci 108:399–405CrossRefGoogle Scholar
  18. Kleinman M et al (2008) Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett 178:127–130. doi: 10.1016/j.toxlet.2008.03.001 CrossRefGoogle Scholar
  19. Lan T et al (2013) Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. J Cell Biochem. doi: 10.1002/jcb.24601 Google Scholar
  20. Lan-Ju XuJ-XZ, Zhang Tao, Ren Guo-Gang, Yang Zhuo (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24:211–217. doi: 10.1002/tox.20418 CrossRefGoogle Scholar
  21. Lee HB, Yu M-R, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:S241–S245. doi: 10.1097/01.ASN.0000077410.66390.0F CrossRefGoogle Scholar
  22. Lee EA, Seo JY, Jiang Z, Yu MR, Kwon MK, Ha H, Lee HB (2005) Reactive oxygen species mediate high glucose–induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int 67:1762–1771. doi: 10.1111/j.1523-1755.2005.00274.x CrossRefGoogle Scholar
  23. Lee Y-J, Ruby DS, Peters DW, McKenzie BB, Hsu JW (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505. doi: 10.1021/nl080659j CrossRefGoogle Scholar
  24. Lei R et al (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301. doi: 10.1016/j.taap.2008.06.026 CrossRefGoogle Scholar
  25. Liu X, Zou H, Widlak P, Garrard W, Wang X (1999) Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) Oligomerization and direct interaction with histone H1. J Biol Chem 274:13836–13840. doi: 10.1074/jbc.274.20.13836 CrossRefGoogle Scholar
  26. Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966CrossRefGoogle Scholar
  27. Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–177. doi: 10.1016/j.tox.2009.11.012 CrossRefGoogle Scholar
  28. Long TC et al (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631. doi: 10.1289/ehp.10216 CrossRefGoogle Scholar
  29. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival*. J Cell Physiol 192:1–15. doi: 10.1002/jcp.10119 CrossRefGoogle Scholar
  30. Meng H et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110. doi: 10.1016/j.toxlet.2007.09.015 CrossRefGoogle Scholar
  31. Mitsos S et al (1986) Canine myocardial reperfusion injury: protection by a free radical SCAVENGER, N-2-mcrcaptopropionyl glycine. J Cardiovasc Pharmacol 8:978–988CrossRefGoogle Scholar
  32. Miyamoto H, Doita M, Nishida K, Yamamoto T, Sumi M, Kurosaka M (2006) Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cells in vitro. Spine 31:4–9. doi: 10.1097/01.brs.0000192682.87267.2a CrossRefGoogle Scholar
  33. Moon J-Y et al (2011) Attenuating effect of angiotensin-(1–7) on angiotensin II-mediated NAD (P) H oxidase activation in type 2 diabetic nephropathy of KK-Ay/Ta mice. Am J Physiol-Renal Physiol 300:F1271–F1282. doi: 10.1152/ajprenal.00065.2010 CrossRefGoogle Scholar
  34. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  35. Oberdörster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi: 10.1186/1743-8977-2-8 CrossRefGoogle Scholar
  36. Park J et al (2011) Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun 47:4382–4384. doi: 10.1039/C1CC10357A CrossRefGoogle Scholar
  37. Ren G, Qiao HX, Yang J, Zhou CX (2010) Protective effects of steroids from Allium chinense against H2O2-induced oxidative stress in rat cardiac H9C2 cells. Phytother Res 24:404–409. doi: 10.1002/Ptr.2964 CrossRefGoogle Scholar
  38. Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci 91:4155–4159CrossRefGoogle Scholar
  39. Sarkar A, Das J, Manna P, Sil PC (2011) Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 290:208–217. doi: 10.1016/j.tox.2011.09.086 CrossRefGoogle Scholar
  40. Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243CrossRefGoogle Scholar
  41. Service RF (2004) Nanotoxicology: nanotechnology grows up. Science 304:1732–1734CrossRefGoogle Scholar
  42. Shao D et al (2013) Suppression of XBP1S mediates high glucose-induced oxidative stress and extracellular matrix synthesis in renal mesangial cell and kidney of diabetic rats. PLoS ONE 8:e56124. doi: 10.1371/journal.pone.0056124 CrossRefGoogle Scholar
  43. Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273. doi: 10.1016/S0079-6123(06)62013-X CrossRefGoogle Scholar
  44. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol-Lung Cell Mol Physiol 279:L1005–L1028Google Scholar
  45. Troy CM, Shelanski ML (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci 91:6384–6387CrossRefGoogle Scholar
  46. Tsai C-C, Wu S-B, Cheng C-Y, Kao S-C, Kau H-C, Lee S-M, Wei Y-H (2011) Increased response to oxidative stress challenge in graves’ ophthalmopathy orbital fibroblasts. Mol Vis 17:2782Google Scholar
  47. Xu P, Xu J, Liu S, Ren G, Yang Z (2012a) In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress. J Nanopart Res 14:1–9. doi: 10.1007/s1151-012-0906-5 Google Scholar
  48. Xu P, Xu J, Liu S, Yang Z (2012b) Nano copper induced apoptosis in podocytes via increasing oxidative stress. J Hazard Mater :279–286. doi  10.1016/j.jhazmat.2012.09.041
  49. Zhu D, Yu H, He H, Ding J, Tang J, Cao D, Hao L (2013) Spironolactone inhibits apoptosis in rat mesangial cells under hyperglycaemic conditions via the Wnt signalling pathway. Mol Cell Biochem :1–9. doi: 10.1007/s11010-013-1672-0

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pengjuan Xu
    • 1
    • 2
  • Zhigui Li
    • 1
  • Xiaochen Zhang
    • 1
  • Zhuo Yang
    • 1
  1. 1.College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular RegulationNankai UniversityTianjinChina
  2. 2.School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations