Advertisement

The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

  • Alireza Khataee
  • Ali Movafeghi
  • Fatemeh Nazari
  • Fatemeh Vafaei
  • Mohammad Reza Dadpour
  • Younes Hanifehpour
  • Sang Woo Joo
Research Paper

Abstract

Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.

Graphical Abstract

Keywords

l-Cysteine-capped CdS nanoparticles Phytotoxicity Indicator species Bioaccumulation Epifluorescence microscopy Antioxidant enzymes 

Notes

Acknowledgments

The authors thank the University of Tabriz, Iran, for all support provided.

References

  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341CrossRefGoogle Scholar
  2. Alvarez C, Angeles Bermudez M, Romero LC, Gotor C, Garcia I (2012) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177CrossRefGoogle Scholar
  3. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Brayner R, Dahoumane SA, Nguyen JN-L, Yepremian C, Djediat C, Coute A, Fievet F (2011) Ecotoxicological studies of CdS nanoparticles on photosynthetic microorganisms. J Nanosci Nanotechnol 11:1852–1858CrossRefGoogle Scholar
  6. Cai Z-X, Yang H, Zhang Y, Yan X-P (2006) Preparation, characterization and evaluation of water-soluble l-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234–239CrossRefGoogle Scholar
  7. Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775CrossRefGoogle Scholar
  8. Chen J-L, Zhu C-Q (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153CrossRefGoogle Scholar
  9. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343CrossRefGoogle Scholar
  10. Dosnon-Olette R, Couderchet M, El Arfaoui A, Sayen S, Eullaffroy P (2010) Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Sci Total Environ 408:2254–2259CrossRefGoogle Scholar
  11. El-Ansary A, Al-Daihan S (2009) On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. doi: 10.1155/2009/754810
  12. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559CrossRefGoogle Scholar
  13. Havaux M (2003) Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci 8:409–413CrossRefGoogle Scholar
  14. Hossain ST, Mukherjee SK (2013) Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 260:1073–1082CrossRefGoogle Scholar
  15. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732CrossRefGoogle Scholar
  16. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRefGoogle Scholar
  17. Jiang R, Zhu H, Li X, Xiao L (2009) Visible light photocatalytic decolourization of CI Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem Eng J 152:537–542CrossRefGoogle Scholar
  18. Jiang H-S, Li M, Chang F-Y, Li W, Yin L-Y (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886CrossRefGoogle Scholar
  19. Khataee AR, Kasiri MB (2011) Artificial neural network modeling of water and wastewater treatment processes. NOVA Science Publisher, Inc, USAGoogle Scholar
  20. Khataee AR, Aber S, Zarei M, Sheydaei M (2011) Environmental applications of activated carbon and carbon nanotubes. NOVA Science Publisher, Inc, USAGoogle Scholar
  21. Khataee A, Movafeghi A, Torbati S, Salehi Lisar S, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298CrossRefGoogle Scholar
  22. Khataee A, Fathinia M, Joo S (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A 112:33–45CrossRefGoogle Scholar
  23. Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  24. Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu 2+ ion. Sens Actuator B Chem 139:104–109CrossRefGoogle Scholar
  25. Kortan A, Hull R, Opila R, Bawendi M, Steigerwald M, Carroll P, Brus LE (1990) Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112:1327–1332CrossRefGoogle Scholar
  26. Kovochich M, Xia T, Xu J, Yeh JI, Nel AE (2007) Principles and procedures to assess nanomaterial toxicity environmental nanotechnology: applications and impacts of nanomaterials. McGraw Hill, New York, pp 205–229Google Scholar
  27. Li H, Li M, Shih WY, Lelkes PI, Shih W-H (2011) Cytotoxicity tests of water soluble ZnS and CdS quantum dots. J Nanosci Nanotechnol 11:3543–3551CrossRefGoogle Scholar
  28. Ma-Hock L, Brill S, Wohlleben W, Farias P, Chaves C, Tenorio D, Fontes A, Santos B, Landsiedel R, Strauss V (2012) Short term inhalation toxicity of a liquid aerosol of CdS/Cd (OH)2 core shell quantum dots in male Wistar rats. Toxicol Lett 208:115–124CrossRefGoogle Scholar
  29. Mishra VK, Tripathi B (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097CrossRefGoogle Scholar
  30. Mishra P, Shukla VK, Yadav RS, Pandey AC (2013) Toxicity concerns of semiconducting nanostructures on aquatic plant Hydrilla verticillata. J Stress Physiol Biochem 9:287–298Google Scholar
  31. Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284CrossRefGoogle Scholar
  32. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  33. Morelli E, Cioni P, Posarelli M, Gabellieri E (2012) Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquat Toxicol 122:153–162CrossRefGoogle Scholar
  34. Movafeghi A, Dadpour MR, Naghiloo S, Farabi S, Omidi Y (2010) Floral development in Astragalus caspicus Bieb. (Leguminosae: Papilionoideae: Galegeae). Flora 205:251–258CrossRefGoogle Scholar
  35. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  36. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefGoogle Scholar
  37. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta A 77:807–810CrossRefGoogle Scholar
  38. Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algai. J Phycol 39:1008–1018CrossRefGoogle Scholar
  39. Prabhu RR, Khadar MA (2005) Characterization of chemically synthesized CdS nanoparticles. Pramana 65:801–807CrossRefGoogle Scholar
  40. Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:1–16CrossRefGoogle Scholar
  41. Rai U, Sinha S, Tripathi R, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12CrossRefGoogle Scholar
  42. Roco MC (2003) Broader societal issues of nanotechnology. J Nanopart Res 5:181–189CrossRefGoogle Scholar
  43. Santos SMA, Dinis AM, Rodrigues DMF, Peixoto F, Videira RA, Jurado AS (2013) Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquat Toxicol 142–143:347–354CrossRefGoogle Scholar
  44. Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxicol 22:539–549CrossRefGoogle Scholar
  45. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152CrossRefGoogle Scholar
  46. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A 114:144–147CrossRefGoogle Scholar
  47. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186CrossRefGoogle Scholar
  48. Vafaei F, Movafeghi A, Khataee A, Zarei M, Salehi Lisar S (2013) Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves. Ecotoxicol Environ Saf 93:128–134CrossRefGoogle Scholar
  49. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  50. Wang S, Yang S, Yang C, Li Z, Wang J, Ge W (2000) Poly (N-vinylcarbazole)(PVK) photoconductivity enhancement induced by doping with CdS nanocrystals through chemical hybridization. J Phys Chem B 104:11853–11858CrossRefGoogle Scholar
  51. Wen-wen C, Si-jia H, Chen-xi W, Qiang Z, Chuan-lu H, Juan D, Shu-mao D (2010) Cytotoxicity effects of nano-Fe3O4 on HeLa cells. In: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on,. IEEE, pp 1–4Google Scholar
  52. Winterbourn CC, McGrath BM, Carrell RW (1976) Reactions involving superoxide and normal and unstable haemoglobins. Biochem J 155:493–502Google Scholar
  53. Xing W, Huang W, Liu G (2010) Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid. Environ Toxicol 25:103–112Google Scholar
  54. Zhu RR, Wang SL, Chao J, Shi DL, Zhang R, Sun XY, Yao SD (2009) Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mater Sci Eng C 29:691–696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alireza Khataee
    • 1
  • Ali Movafeghi
    • 2
  • Fatemeh Nazari
    • 1
    • 2
  • Fatemeh Vafaei
    • 2
  • Mohammad Reza Dadpour
    • 3
  • Younes Hanifehpour
    • 4
  • Sang Woo Joo
    • 4
  1. 1.Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Plant Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
  3. 3.Department of Horticultural Science, Faculty of AgricultureUniversity of TabrizTabrizIran
  4. 4.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations