Advertisement

Surface diffusion versus atomic addition: using temperature to maneuver the morphology of Pd nanostructures by seeded-growth

  • Jiale Wang
  • Peixuan Chen
  • Pedro H. C. Camargo
Brief Communication
  • 152 Downloads

Abstract

We report herein the synthesis of Pd nanostructures ~64–95-nm range in size displaying controlled surface morphologies by a seeded-growth method employing Pd nanoparticles as seeds. Interestingly, we found that the surface texture and thus the surface area of the produced Pd nanomaterials could be tuned by varying the seeded-growth temperature. Pd nanostructures displaying increasingly higher surface textures were obtained as the seeded-growth temperature was decreased from 95 to 30 °C. These results could be explained based on the variations in the relative rates of atom deposition (V deposition) and surface diffusion (V diffusion) during the Pd growth. The catalytic activities of the Pd nanostructures toward the reduction of 4-nitrophenol augmented with the increase in the surface texture of the produced nanostructures. The results presented herein can have important implications for designing facile approaches to the synthesis of Pd nanostructures with desired features and optimized catalytic performances that can be highly accessible and attractive for large scale production.

Keywords

Nanostructures Metals Diffusion 

Notes

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant number 2013/19861-6) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant number 471245/2012-7). J.W. thanks FAPESP for the fellowship (2013/05709-8). P.H.C.C. thanks the CNPq for the research fellowship. We thank A. Halilovic for technical assistance with the SEM experiments at the Institute of Semiconductor and Solid State Physics, Johannes Kepler University.

References

  1. Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D (2007) Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime. J Phys Chem C 111:5915–5925. doi: 10.1021/jp0702752 CrossRefGoogle Scholar
  2. Chen X, Zhao D, An Y, Zhang Y, Cheng J, Wang B, Shi L (2008) Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles. J Colloid Interface Sci 322:414–420. doi: 10.1016/j.jcis.2008.03.029 CrossRefGoogle Scholar
  3. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231. doi: 10.1126/science.1063189 CrossRefGoogle Scholar
  4. Garcia-Martinez JC, Lezutekong R, Crooks RM (2005) Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the stille reaction. J Am Chem Soc 127:5097–5103. doi: 10.1021/ja042479r CrossRefGoogle Scholar
  5. Jewell LL, Davis BH (2006) Review of absorption and adsorption in the hydrogen–palladium system. Appl Catal A 310:1–15. doi: 10.1016/j.apcata.2006.05.012 CrossRefGoogle Scholar
  6. Lee KY, Lee YW, Lee J, Han SW (2010) Effect of ligand structure on the catalytic activity of Au nanocrystals. Colloids Surf A 372:146–150. doi: 10.1016/j.colsurfa.2010.10.019 CrossRefGoogle Scholar
  7. Lim B, Jiang MJ, Tao J, Camargo PHC, Zhu YM, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200. doi: 10.1002/adfm.200801439 CrossRefGoogle Scholar
  8. Lin FH, Doong RA (2011) Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598. doi: 10.1021/jp110956k CrossRefGoogle Scholar
  9. Narayanan R, El-Sayed M (2004) Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the suzuki coupling reaction. J Phys Chem B 108:8572–8580. doi: 10.1021/jp037169u CrossRefGoogle Scholar
  10. Niu W, Li ZY, Shi L, Liu X, Li H, Han S, Chen J, Xu G (2008) Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst Growth Des 8:4440–4444. doi: 10.1021/cg8002433 CrossRefGoogle Scholar
  11. Niu WX, Zhang L, Xu GB (2010) Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4:1987–1996. doi: 10.1021/nn100093y CrossRefGoogle Scholar
  12. Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang WJ, Stevenson KJ, Henkelman G (2013) Electrochemical desorption of thiolates and sulfur from nanoparticle and planar platinum surfaces. J Phys Chem C 117:7598–7604. doi: 10.1021/jp311938u CrossRefGoogle Scholar
  13. Pradhan N, Pal A, Pal T (2001) Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17:1800–1802. doi: 10.1021/la000862d CrossRefGoogle Scholar
  14. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi: 10.1021/ja047846d CrossRefGoogle Scholar
  15. Schrinner M, Ballauff M, Talmon Y, Kauffmann Y, Thun J, Moller M, Breu J (2009) Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science 323:617–620. doi: 10.1126/science.1166703 CrossRefGoogle Scholar
  16. Williams R, Yocom PM, Stofko FS (1985) Preparation and properties of spherical zinc sulfide particles. J Colloid Interf Sci 106:388–398. doi: 10.1016/S0021-9797(85)80013-8 CrossRefGoogle Scholar
  17. Xia XH, Xie SF, Liu MC, Peng HC, Lu N, Wang JG, Kim MJ, Xia Y (2013) On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. PNAS 110:6669–6673. doi: 10.1073/pnas.1222109110 CrossRefGoogle Scholar
  18. Yeung LK, Crooks RM (2001) Heck heterocoupling within a dendritic nanoreactor. Nano Lett 1:14–17. doi: 10.1021/nl0001860 CrossRefGoogle Scholar
  19. Zhang H, Jin MS, Xiong YJ, Lim B, Xia Y (2013a) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794. doi: 10.1021/ar300209w CrossRefGoogle Scholar
  20. Zhang JW, Hou CP, Huang H, Zhang L, Jiang ZY, Chen GX, Jia YY, Kuang Q, Xie ZX, Zheng LS (2013b) Surfactant-concentration-dependent shape evolution of Au–Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. small 9:538–544CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jiale Wang
    • 1
  • Peixuan Chen
    • 2
  • Pedro H. C. Camargo
    • 1
  1. 1.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Institute of Semiconductor and Solid State PhysicsJohannes Kepler University LinzLinzAustria

Personalised recommendations