Advertisement

Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2−xy C x N y nanoparticles toward visible-light driven photocatalytic activity

  • Shou-Heng Liu
  • Han-Ren Syu
  • Chung-Yi Wu
Research Paper

Abstract

A one-step solvent evaporation-induced self-assembly (SEISA) process was demonstrated to prepare carbon and nitrogen co-doping mesoporous TiO2 nanoparticles (MesoTiO2−xy C x N y -S) using an ionic liquid as carbon and nitrogen sources as well as mesoporous template. After the evaporation of different solvents (methanol, ethanol, and isopropanol) and subsequent calcinations at 773 K, the obtained MesoTiO2−xy C x N y -S samples were systematically characterized by a variety of spectroscopic and analytical techniques, including small- and large-angle X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The results indicate that the solvents play an essential role on the chemical microstructure, doping elemental states, and photocatalytic performance of catalysts. The MesoTiO2−xy C x N y -I samples have the lowest band gap of ca. 2.75 eV and strongest absorbance of visible light in the range of 400–600 nm. Among the MesoTiO2−xy C x N y -S photocatalysts, the MesoTiO2−xy C x N y -M catalysts show superior photocatalytic activity of hydrogen generation in methanol aqueous solution under visible light irradiation as compared to MesoTiO2−xy C x N y -E, MesoTiO2−xy C x N y -I, and commercial Degussa TiO2. This result could be attributed to the moderate C,N co-doping amounts on their developed mesoporous texture (pore size = 8.0 nm) and high surface area (107 m2 g−1) of TiO2 (crystallite size = 9.9 nm) in the MesoTiO2−xy C x N y -M catalysts.

Keywords

Solvent evaporation-induced self-assembly Mesoporous titania TiO2-x-yCxNy Ionic liquid Photocatalytic 

Notes

Acknowledgments

The support of this work by the National Science Council, Taiwan is gratefully acknowledged.

References

  1. Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49. doi: 10.1002/adfm.200400184 CrossRefGoogle Scholar
  2. Chen DM, Jiang ZY, Geng JQ, Wang Q, Yang D (2007a) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. doi: 10.1021/ie061491k CrossRefGoogle Scholar
  3. Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW (2007b) Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J Power Sources 171:363–372. doi: 10.1016/j.jpowsour.2007.06.047 CrossRefGoogle Scholar
  4. Chen DM, Jiang ZY, Geng JQ, Zhu JH, Yang D (2009) A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6. J Nanoparticle Res 11:303–313. doi: 10.1007/s11051-008-9383-2 CrossRefGoogle Scholar
  5. Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801. doi: 10.1246/cl.2006.800 CrossRefGoogle Scholar
  6. Das SK, Bhunia MK, Sinha AK, Bhaumik A (2009) Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template. J Phys Chem C 113:8918–8923. doi: 10.1021/jp9014096 CrossRefGoogle Scholar
  7. Das SK, Bhunia MK, Bhaumik A (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39(2010):4382–4390. doi: 10.1039/c000317d CrossRefGoogle Scholar
  8. Dhananjeyan MR, Kandavelu V, Renganathan R (2000) A study on the photocatalytic reactions of TiO2 with certain pyrimidine bases: effects of dopants (Fe3+) and calcination. J Mol Catal A Chem 151:217–223. doi: 10.1016/S1381-1169(99)00246-0 CrossRefGoogle Scholar
  9. Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820. doi: 10.1021/jp993819b CrossRefGoogle Scholar
  10. Dolat D, Quici N, Kusiak-Nejman E, Morawski AW, Puma GL (2012) One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C-TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B Environ 115–116:81–89. doi: 10.1016/j.apcatb.2011.12.007 CrossRefGoogle Scholar
  11. Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi: 10.1039/b822551f CrossRefGoogle Scholar
  12. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem Mater 22:3843–3853. doi: 10.1021/cm903260f CrossRefGoogle Scholar
  13. Han CC, Lin YP, Ho SY, Lai YC, Chen SY, Huang J, Chen-Yang YW (2010) Effect of ionic liquid-templated mesoporous anatase TiO2 on performance of dye-sensitized solar cell. J Phys D Appl Phys 43:035102. doi: 10.1088/0022-3727/43/3/035102 CrossRefGoogle Scholar
  14. Han CS, Andersen J, Likodimos V, Falaras P, Linkugel J, Dionysiou DD (2014) The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal Today 224:132–139. doi: 10.1016/j.cattod.2013.11.052 CrossRefGoogle Scholar
  15. Hojamberdiev M, Prasad RM, Morita K, Zhu YF, Schiavon M, Al Gurlo, Riedel R (2012) Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. Appl Catal B Environ 115:303–313. doi: 10.1016/j.apcatb.2011.12.036 CrossRefGoogle Scholar
  16. Huang B, Wey MY (2013) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol-gel process. J Nanoparticle Res 16:2178. doi: 10.1007/s11051-013-2178-0 CrossRefGoogle Scholar
  17. Kim J, Kang M (2012) High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Int J Hydrogen Energy 37:8249–8256. doi: 10.1016/j.ijhydene.2012.02.057 CrossRefGoogle Scholar
  18. Li FT, Wang XJ, Zhao Y, Liu JX, Hao YJ, Liu RH, Zhao DS (2014) Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO2 via a microwave route. Appl Catal B Environ 144:442–453. doi: 10.1016/j.apcatb.2013.07.050 CrossRefGoogle Scholar
  19. Liu S-H, Syu H-R (2012) One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Appl Energy 100:148–154. doi: 10.1016/j.apenergy.2012.03.063 CrossRefGoogle Scholar
  20. Liu S-H, Syu H-R (2013) High visible-light photocatalytic hydrogen evolution of C, N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid template approach. Int J Hydrogen Energy 38:13856–13865. doi: 10.1016/j.ijhydene.2013.08.094 CrossRefGoogle Scholar
  21. Ma Z, Yu JH, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. doi: 10.1002/adma.200900603 CrossRefGoogle Scholar
  22. Manole AV, Dobromir M, Apetrei R, Nica V, Luca D (2014) Surface characterization of sputtered N:TiO2 thin films within a wide range of dopant concentration. Ceram Int 40:9989–9995. doi: 10.1016/j.ceramint.2014.02.097 CrossRefGoogle Scholar
  23. Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts. Adv Funct Mater 17:3348–3354. doi: 10.1002/adfm.200700396 CrossRefGoogle Scholar
  24. Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36:2794–2802. doi: 10.1016/j.ijhydene.2010.11.104 CrossRefGoogle Scholar
  25. Noguchi D, Kawamata Y, Nagatomo T (2005) The response of TiO2 photocatalysts codoped with nitrogen and carbon to visible light. J Electrochem Soc 152:D124–D129. doi: 10.1149/1.1990581 CrossRefGoogle Scholar
  26. Ould-Chikh S, Proux O, Afanasiev P, Khrouz L, Hedhili MN, Anjum DH, Harb M, Geantet C, Basset JM, Puzenat E (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem 7:1361–1371. doi: 10.1002/cssc.201300922 CrossRefGoogle Scholar
  27. Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A (2014) Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B Environ 154–155:285–293. doi: 10.1016/j.apcatb.2014.02.039 CrossRefGoogle Scholar
  28. Pan JH, Zhang XW, Du AJ, Sun DD, Leckie JO (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257. doi: 10.1021/ja803582m CrossRefGoogle Scholar
  29. Parker JC, Siegel RW (1990) Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett 57:943–945CrossRefGoogle Scholar
  30. Ruzybayev I, Shah SI (2014) The role of oxygen pressure in nitrogen and carbon co-doped TiO2 thin films prepared by pulsed laser deposition method. Surf Coat Technol 241:148–153. doi: 10.1016/j.surfcoat.2013.10.073 CrossRefGoogle Scholar
  31. Sajjad S, Leghari SAK, Zhang JL (2013) Copper impregnated ionic liquid assisted mesoporous titania: visible light photocatalyst. RSC Adv 3:12678–12687. doi: 10.1039/c3ra23347b CrossRefGoogle Scholar
  32. Scarisoreanu M, Morjan I, Alexandrescu R, Fleaca CT, Badoi A, Dutu E, Niculescu A-M, Luculescu C, Vasile E, Wang J, Bouhadoun S, Herlin-Boime N (2014) Enhancing the visible light absorption of titania nanoparticles by S and C doping in a single-step process. Appl Surf Sci 4:5880–5886. doi: 10.1016/j.apsusc.2014.01.135 Google Scholar
  33. Sivaranjani K, Gopinath CS (2011) Porosity driven photocatalytic activity of wormhole mesoporous TiO2-xNx in direct sunlight. J Mater Chem 21:2639–2647. doi: 10.1039/c0jm03825c CrossRefGoogle Scholar
  34. Song JJ, Zhu BL, Zhao WL, Hu XJ, Shi YK, Huang WP (2013) Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach. J Nanopart Res 15:1494. doi: 10.1007/s11051-013-1494-8 CrossRefGoogle Scholar
  35. Soni SS, Henderson MJ, Bardeau JF, Gibaud A (2008) Visible-light photocatalysis in titania-based mesoporous thin films. Adv Mater 20:1493–1498. doi: 10.1002/adma.200701066 CrossRefGoogle Scholar
  36. Tian HJ, Hu LH, Zhang CN, Liu WQ, Huang Y, Mo L, Guo L, Sheng J, Dai SY (2010) Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J Phys Chem C 114:1627–1632. doi: 10.1021/jp9103646 CrossRefGoogle Scholar
  37. Todorova N, Vaimakis T, Petrakis D, Hishita S, Boukos N, Giannakopoulou T, Giannouri M, Antiohos S, Papageorgiou D, Chaniotakis E, Trapalis C (2013) N and N, S-doped TiO2 photocatalysts and their activity in NOx oxidation. Catal Today 209:41–46. doi: 10.1016/j.cattod.2012.11.019 CrossRefGoogle Scholar
  38. Umadevi M, Parimaladevi R, Sangari M (2014) Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method. Spectrochim Acta A 120:365–369. doi: 10.1016/j.saa.2013.10.046 CrossRefGoogle Scholar
  39. Venieri D, Fraggedaki A, Kostadima M, Chatzisymeon E, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2014) Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl Catal B Environ 154:93–101. doi: 10.1016/j.apcatb.2011.12.007 CrossRefGoogle Scholar
  40. Vereb G, Manczinger L, Oszko A, Sienkiewicz A, Forro L, Mogyorosi K, Dombi A, Hernadi K (2013) Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B Environ 129:194–201. doi: 10.1016/j.apcatb.2012.08.037 CrossRefGoogle Scholar
  41. Wang XP, Lim TT (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal A Gen 399:233–241. doi: 10.1016/j.apcata.2011.04.002 CrossRefGoogle Scholar
  42. Wang Q, Jiang ZY, Wang YB, Chen DM, Yang D (2009) Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. J Nanoparticle Res 11:375–384. doi: 10.1007/s11051-008-9390-3 CrossRefGoogle Scholar
  43. Wang DH, Jia L, Wu XL, Lu LQ, Xu AW (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4:576–584. doi: 10.1039/c1nr11353d CrossRefGoogle Scholar
  44. Wu Y-C, Ju L-S (2014) Annealing-free synthesis of C-N co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities. J Alloys Compd 604:164–170. doi: 10.1016/j.jallcom.2014.03.023 CrossRefGoogle Scholar
  45. Xu QC, Wellia DV, Amal R, Liao DW, Loo JSC, Tan TTY (2010) Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale 2:1122–1127. doi: 10.1039/c0nr00105h CrossRefGoogle Scholar
  46. Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011) Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. J Hazar Mater 188:172–180. doi: 10.1016/j.jhazmat.2011.01.088 CrossRefGoogle Scholar
  47. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2008) Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal 260:128–133. doi: 10.1016/j.jcat.2008.09.016 CrossRefGoogle Scholar
  48. Yang GD, Jiang Z, Shi HH, Xiao TC, Yan ZF (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309. doi: 10.1039/c0jm00376j CrossRefGoogle Scholar
  49. Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2007) Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping. J Mater Sci 42:2399–2404. doi: 10.1007/s10853-006-1231-0 CrossRefGoogle Scholar
  50. Zhang SJ, Song LM (2009) Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline. Catal Commun 10:1725–1729. doi: 10.1016/j.catcom.2009.05.017 CrossRefGoogle Scholar
  51. Zhang K, Wang XD, Guo XL, He TO, Feng YM (2014) Preparation of highly visible light active Fe-N co-doped mesoporous TiO2 photocatalyst by fast sol-gel method. J Nanopart Res 16:2246. doi: 10.1007/s11051-014-2246-0 CrossRefGoogle Scholar
  52. Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321. doi: 10.1002/adma.201000660 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan

Personalised recommendations