Advertisement

Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

  • A. Kurtz-Chalot
  • J. P. Klein
  • J. Pourchez
  • D. Boudard
  • V. Bin
  • G. B. Alcantara
  • M. Martini
  • M. Cottier
  • V. Forest
Research Paper

Abstract

Silica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: (1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol molecules, (2) positively charged silica nanoparticles coated with amine groups, and (3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 h with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay, and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production, and oxidative stress. Results showed that the highly positively charged nanoparticle were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticle types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity.

Keywords

Silica nanoparticles Macrophages Surface functionalization Uptake Pro-inflammatory effect Cytotoxicity 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the Région Rhône-Alpes and the Conseil Général de la Loire.

References

  1. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefGoogle Scholar
  2. Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS (2013) Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget 4:378–396Google Scholar
  3. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780CrossRefGoogle Scholar
  4. Bhattacharjee S, de Haan LHJ, Evers NM, Jiang X, Marcelis ATM, Zuilhof H, Rietjens IMCM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25CrossRefGoogle Scholar
  5. Bruch J, Rehn S, Rehn B, Borm PJA, Fubini B (2004) Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Health 207:203–216CrossRefGoogle Scholar
  6. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055CrossRefGoogle Scholar
  7. Chandolu V, Dass CR (2013) Treatment of lung cancer using nanoparticle drug delivery systems. Curr Drug Discov Technol 10:170–176CrossRefGoogle Scholar
  8. Chung T-H, Wu S-H, Yao M, Lu C-W, Lin Y-S, Hung Y, Mou C-Y, Chen Y-C, Huang D-M (2007) The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28:2959–2966CrossRefGoogle Scholar
  9. Colilla M, Manzano M, Vallet-Regí M (2008) Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed 3:403–414Google Scholar
  10. Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailänder V (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8:1135–1143CrossRefGoogle Scholar
  11. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 5:e10949CrossRefGoogle Scholar
  12. DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, Wohlleben W, Demokritou P (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514CrossRefGoogle Scholar
  13. Duffin R, Mills NL, Donaldson K (2007) Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 48:561–572CrossRefGoogle Scholar
  14. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  15. Faunce TA, White J, Matthaei KI (2008) Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine 3:859–866CrossRefGoogle Scholar
  16. Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591CrossRefGoogle Scholar
  17. Fubini B, Fenoglio I, Ceschino R, Ghiazza M, Martra G, Tomatis M, Borm P, Schins R, Bruch J (2004) Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 207:89–104CrossRefGoogle Scholar
  18. Ge Y, Zhang Y, Xia J, Ma M, He S, Nie F, Gu N (2009) Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf B 73:294–301CrossRefGoogle Scholar
  19. Graf C, Gao Q, Schütz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S et al (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28:7598–7613CrossRefGoogle Scholar
  20. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618CrossRefGoogle Scholar
  21. Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A et al (2011) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6:713–723CrossRefGoogle Scholar
  22. Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P (2014) Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res 16:1–14CrossRefGoogle Scholar
  23. Hu Y, Xie J, Tong YW, Wang C-H (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Controlled Release 118:7–17CrossRefGoogle Scholar
  24. Huang D-M, Hung Y, Ko B-S, Hsu S-C, Chen W-H, Chien C-L, Tsai C-P, Kuo C-T, Kang J-C, Yang C-S et al (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19:2014–2016CrossRefGoogle Scholar
  25. ISO TS/13014 (2012)—International Organization for Standardization—Nanotechnologies—Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52334
  26. Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16CrossRefGoogle Scholar
  27. Lankoff A, Arabski M, Wegierek-Ciuk A, Kruszewski M, Lisowska H, Banasik-Nowak A, Rozga-Wijas K, Wojewodzka M, Slomkowski S (2013) Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology 7:235–250CrossRefGoogle Scholar
  28. Leclerc L, Boudard D, Pourchez J, Forest V, Sabido O, Bin V, Palle S, Grosseau P, Bernache D, Cottier M (2010) Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms. Inhal Toxicol 22:1091–1100CrossRefGoogle Scholar
  29. Leclerc L, Boudard D, Pourchez J, Forest V, Marmuse L, Louis C, Bin V, Palle S, Grosseau P, Bernache-Assollant D et al (2012a) Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles. J Nanopart Res 14:1–13CrossRefGoogle Scholar
  30. Leclerc L, Rima W, Boudard D, Pourchez J, Forest V, Bin V, Mowat P, Perriat P, Tillement O, Grosseau P et al (2012b) Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro. Inhal Toxicol 24:580–588CrossRefGoogle Scholar
  31. Lidén G (2011) The European commission tries to define nanomaterials. Ann Occup Hyg 55:1–5CrossRefGoogle Scholar
  32. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 105:14265–14270CrossRefGoogle Scholar
  33. Luzio JP, Poupon V, Lindsay MR, Mullock BM, Piper RC, Pryor PR (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20:141–154CrossRefGoogle Scholar
  34. Martini M, Perriat P, Montagna M, Pansu R, Julien C, Tillement O, Roux S (2009) How gold particles suppress concentration quenching of fluorophores encapsulated in silica beads. J Phys Chem C 113:17669–17677CrossRefGoogle Scholar
  35. Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, Boschetti F, Bocher L, Gloter A, Stéphan O et al (2013) A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chemistry 19:6122–6136CrossRefGoogle Scholar
  36. Munkholm C, Parkinson DR, Walt DR (1990) Intramolecular fluorescence self-quenching of fluoresceinamine. J Am Chem Soc 112:2608–2612CrossRefGoogle Scholar
  37. Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed 6:2591–2605Google Scholar
  38. Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K (2011) Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–4168CrossRefGoogle Scholar
  39. Nabeshi H, Yoshikawa T, Arimori A, Yoshida T, Tochigi S, Hirai T, Akase T, Nagano K, Abe Y, Kamada H et al (2011) Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages. Nanoscale Res Lett 6:93CrossRefGoogle Scholar
  40. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39CrossRefGoogle Scholar
  41. Nuutila J, Lilius E-M (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry A 65:93–102CrossRefGoogle Scholar
  42. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331CrossRefGoogle Scholar
  43. Panas A, Marquardt C, Nalcaci O, Bockhorn H, Baumann W, Paur H-R, Mülhopt S, Diabaté S, Weiss C (2013) Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 7:259–273CrossRefGoogle Scholar
  44. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  45. Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J et al (2012) Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6:6829–6842CrossRefGoogle Scholar
  46. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine–challenge and perspectives. Angew Chem Int Ed Engl 48:872–897CrossRefGoogle Scholar
  47. Seaton A, Donaldson K (2005) Nanoscience, nanotoxicology, and the need to think small. Lancet 365:923–924CrossRefGoogle Scholar
  48. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  49. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22CrossRefGoogle Scholar
  50. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781CrossRefGoogle Scholar
  51. Vallet-Regi M, Balas F (2008) Silica materials for medical applications. Open Biomed Eng J 2:1–9CrossRefGoogle Scholar
  52. Van Amersfoort ES, Van Strijp JA (1994) Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry 17:294–301CrossRefGoogle Scholar
  53. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799CrossRefGoogle Scholar
  54. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147CrossRefGoogle Scholar
  55. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728CrossRefGoogle Scholar
  56. Yue Z-G, Wei W, Lv P-P, Yue H, Wang L-Y, Su Z-G, Ma G-H (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Kurtz-Chalot
    • 1
    • 2
    • 3
  • J. P. Klein
    • 1
    • 3
    • 4
    • 5
  • J. Pourchez
    • 1
    • 2
    • 3
  • D. Boudard
    • 1
    • 3
    • 4
    • 5
  • V. Bin
    • 3
    • 4
  • G. B. Alcantara
    • 6
  • M. Martini
    • 7
  • M. Cottier
    • 1
    • 3
    • 4
    • 5
  • V. Forest
    • 1
    • 2
    • 3
  1. 1.LINA Laboratoire Interdisciplinaire d’étude des Nanoparticules Aérosolisées (EA 4624), Faculté de Médecine Jacques LisfrancSaint-Étienne Cedex 2France
  2. 2.École Nationale Supérieure des Mines de Saint-EtienneSaint-Étienne Cedex 2France
  3. 3.SFR IFRESIS, UFR de MédecineSaint-Étienne Cedex 2France
  4. 4.Université Jean MonnetSaint-ÉtienneFrance
  5. 5.CHUSaint-ÉtienneFrance
  6. 6.PRES Lyon, Centre de Microscopie Confocale Multiphotonique, INSA de LyonVilleurbanne CedexFrance
  7. 7.ILM, Institut Lumière Matière, UMR 5603 CNRS, Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations