Magnetic nanoparticles in medical nanorobotics

  • Sylvain Martel
Research Paper
Part of the following topical collections:
  1. Nanotechnology in Biorobotic Systems


Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.


Nanorobotics Medical nanorobotic agents Magnetic nanoparticles Medical target interventions Magnetic actuation MRI Local hyperthermia 


  1. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519CrossRefGoogle Scholar
  2. Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60(4):994–1001CrossRefGoogle Scholar
  3. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379CrossRefGoogle Scholar
  4. Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61CrossRefGoogle Scholar
  5. Branquinho LC et al (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3:2887CrossRefGoogle Scholar
  6. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865CrossRefGoogle Scholar
  7. Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127–8131CrossRefGoogle Scholar
  8. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRefGoogle Scholar
  9. Guarda P et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRefGoogle Scholar
  10. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  11. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214Google Scholar
  12. Jun YW et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnostic via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733CrossRefGoogle Scholar
  13. Lacroix L-M et al (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911CrossRefGoogle Scholar
  14. Lee JH et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech. 6:418CrossRefGoogle Scholar
  15. Lee N et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vovo MRI in tumors. Nano Lett 12:3127–3131CrossRefGoogle Scholar
  16. Martel S (2013a) Bacterial microsystems and microrobots. Biomed Microdevices 14(6):1033–1045CrossRefGoogle Scholar
  17. Martel S (2013b) Navigation control of micro-agents in the vascular network: challenges and strategies for endovascular magnetic navigation control of microscale drug delivery carriers. IEEE Cont Syst 33(6):119–134CrossRefGoogle Scholar
  18. Martel S (2014) Magnetic therapeutic delivery using navigable agents. Ther Deliv 5:189–204CrossRefGoogle Scholar
  19. Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan É, Tamaz S, Pouponneau P, Beaudoin G, Soulez G, Yahia L’H, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105CrossRefGoogle Scholar
  20. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009a) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J Robot Res (IJRR) 28(4):571–582CrossRefGoogle Scholar
  21. Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009b) MRI-based nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J Robot Res (IJRR) 28(9):1169–1182CrossRefGoogle Scholar
  22. Martinex-Boubeta C et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3:1652Google Scholar
  23. Martinez-Boubeta C et al (2010) Self-assembled Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed. Nanotech. Biol. Med. 6:362–370CrossRefGoogle Scholar
  24. Mathieu J-B, Martel S (2009) Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl Phys. 106:1–044904CrossRefGoogle Scholar
  25. Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53(2):292–299CrossRefGoogle Scholar
  26. Meffre A et al (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728CrossRefGoogle Scholar
  27. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175CrossRefGoogle Scholar
  28. Ngo A-T, Pileni M-P (2000) Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties. Adv Mater 12(4):276–279CrossRefGoogle Scholar
  29. Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486CrossRefGoogle Scholar
  30. Pouponneau P, Segura V, Savadogo O, Lweroux J-C, Martel S (2012) Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J Nanopart Res 14:1307–1320CrossRefGoogle Scholar
  31. Pouponneau P, Bringout G, Martel S (2014) Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembolization: a design review”. Ann Biomed Eng 42(5):929–939CrossRefGoogle Scholar
  32. Reiss G, Hutten A (2005) Magnetic nanoparticles–Applications beyond data storage. Nat Mater 4:725–726CrossRefGoogle Scholar
  33. Serantes et al (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108:073918CrossRefGoogle Scholar
  34. Serantes et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRefGoogle Scholar
  35. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. PNAS 101(30):10901–10906CrossRefGoogle Scholar
  36. Tabatabaei SN, Lapointe J, Martel S (2011) Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot 25:1049–1067CrossRefGoogle Scholar
  37. Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain, IEEE Conf. Robot Autom 14:727–732Google Scholar
  38. Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRefGoogle Scholar
  39. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRefGoogle Scholar
  40. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009b) Size-dependent endocytosis of nanoparticles. Adv. Matter. 21:419CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical EngineeringPolytechnique MontréalMontréalCanada

Personalised recommendations