Nanostructured microspheres of silver @ zinc oxide: an excellent impeder of bacterial growth and biofilm

  • Santosh S. Patil
  • Rajendra H. Patil
  • Sheetal B. Kale
  • Mohaseen S. Tamboli
  • Jalindar D. Ambekar
  • Wasudev N. Gade
  • Sanjay S. Kolekar
  • Bharat B. Kale
Research Paper


Nanostructured (metal/semiconductor) Ag@ZnO a photoactive material is synthesized by facile hydrothermal method. The FESEM analysis of as synthesized Ag@ZnO nanostructures showed formation of submicron-sized microspheres, composed of small nanoparticles of size in the range of 10–20 nm. The as synthesized Ag@ZnO nanostructures possess wurtzite hexagonal structure of ZnO with band edge transition to visible region due to surface plasmon effect of silver which ultimately is responsible for the improved photocatalytic performance. The photocatalytic action of Ag@ZnO nanostructures impede the growth of model organisms Bacillus subtilis NCIM 2063 and Escherichia coli NCIM 2931, and biofilm in Pseudomonas aeruginosa O1. The present study is important as it introduces an excellent functionality of Ag@ZnO, an agent for impeding the biofilm and bacterial communities inside the biofilm.


Silver zinc oxide Nanostructures Biofilm Bacteria 



Authors are thankful to Dr. D. P. Amalnerkar, Executive Director, C-MET, for his constant encouragement. Authors also would like to thank DeitY, New Delhi, for financial support. Authors are thankful to Nanocrystalline group for their generous help. RP and WNG would like to thanks Departmental Research and Development Grant from Department of Biotechnology, Savitribai Phule Pune University for financial help.

Supplementary material

11051_2014_2717_MOESM1_ESM.doc (514 kb)
Supplementary material 1 (DOC 514 kb)


  1. Alhede M, Bjarnsholt T, Givskov M, Alhede M (2014) Chapter one: Pseudomonas aeruginosa biofilms—mechanisms of immune evasion. In: Sima S, Geoffrey MG (eds) Advances in applied microbiology. Academic Press, New York, pp 1–40Google Scholar
  2. Campoccia D, Montanaro L, Arciola C (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533CrossRefGoogle Scholar
  3. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636CrossRefGoogle Scholar
  4. De Faria AF, Martinez DS, Meira SM, De Moraes AC, Brandelli A, Filho AG, Alves OL (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115Google Scholar
  5. Dong Y, Zhan S, Wang P, Wuhan J (2012) A facile synthesis of Ag Modified ZnO nanocrystals with enhanced photocatalytic activity. Univ Tech-Mater Sci Ed 27:2017. doi  10.1007/s11595-012-0515-2
  6. Dong J, Zhen C, Hao H, Xing J, Zhang Z, Zheng Z, Zhang X (2013) Controllable synthesis of ZnO nanostructures on the Si substrate by a hydrothermal route. J Nanoscale Res Lett 8:378CrossRefGoogle Scholar
  7. Dong Y, Feng C, Jiang P, Wang G, Li K, Miao H (2014) Simple one-pot synthesis of ZnO/Ag heterostructures and the application in visible-light-responsive photocatalysis. RSC Adv 4:7340CrossRefGoogle Scholar
  8. Durmus N, Taylor E, Kummer K, Webster T (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25:5706CrossRefGoogle Scholar
  9. Gao S, Jia X, Yang S, Li Z, Jiang K (2011) Hierarchical Ag/ZnO micro/nanostructure: green synthesis and enhanced photocatalytic performance. J Solid State Chem 184:764–769CrossRefGoogle Scholar
  10. Gholap H, Patil R, Yadav P, Banpurkar A, Ogale S, Gade W (2013) CdTe-TiO2 nanocomposite: an impeder of bacterial growth and biofilm. Nanotechnology 24:195101. doi: 10.1088/0957-4484/24/19/195101 CrossRefGoogle Scholar
  11. Habib M, Shahadat M, Bahadur N, Ismail I, Mahmood A (2013) Synthesis and characterization of ZnO–TiO2 nanocomposites and their application as photocatalysts. Int Nano Lett 3:1–8CrossRefGoogle Scholar
  12. He D, Jones A, Garg S, Pham A, Waite T (2011) Silver nanoparticle reactive oxygen species interactions: application of a charging–discharging model. J Phys Chem C 115:5461CrossRefGoogle Scholar
  13. Hendry E, Koeberg M, Regan B, Bonn M (2006) local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett 6:755CrossRefGoogle Scholar
  14. Houdt R, Michiels C (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117CrossRefGoogle Scholar
  15. Hyun J, Zhang S, Lauhon L (2013) Nanowire heterostructures. Ann Rev Mater Res 43:451CrossRefGoogle Scholar
  16. Inbakandan D, Kumar C, Abraham L, Kirubagaran R, Venkatesan R, Khan S (2013) Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Colloids Surf B 111:636CrossRefGoogle Scholar
  17. Jia XY, Yu, Luo T, Zhang MY, Liu JH, Huang XJ (2013) Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Cryst Eng Commun 15:3647CrossRefGoogle Scholar
  18. Khanchandani S, Kundu S, Patra A, Ganguli A (2012) Shell thickness dependent photocatalytic properties of ZnO/CdS core–shell nanorods. J Phys Chem C 116:23653CrossRefGoogle Scholar
  19. Kochuveedu S, Jang Y, Kim D (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42(2013):8467–8493CrossRefGoogle Scholar
  20. Kumar S, Venkateswarlu P, Rao V, Rao G (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:1–6CrossRefGoogle Scholar
  21. Kuriakose S, Bhardwaj N, Singh J, Satpati B, Mohapatra S (2013) Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method Beilstein. J Nanotechnol 4:763Google Scholar
  22. Lana Y, Lub Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nanoenergy 2:1031–1045Google Scholar
  23. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473CrossRefGoogle Scholar
  24. Li Z, Yang R, Yu M, Bai F, Li C, Wang Z (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 51:20114–20117CrossRefGoogle Scholar
  25. Li P, Wei Z, Wu T, Peng Q, Li Y (2011) Au–ZnO Hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133:5660CrossRefGoogle Scholar
  26. Link S, El-Sayed M (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanorods and nanorods. J Phys Chem B 103:8410CrossRefGoogle Scholar
  27. Linsebigler A, Lu G, Yates J (1995) Self-organized, free-Standing TiO2 nanotube membrane for flow-through photocatalytic applications. Chem Rev 95:735CrossRefGoogle Scholar
  28. Lipovsky A, Gedanken A, Lubart R (2013) Visible light-induced antibacterial activity of metaloxide nanoparticles. Photomed Laser Surg 31:526CrossRefGoogle Scholar
  29. Lu W, Gao S, Wang J (2008) One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J Phys Chem C 112:16792–16800CrossRefGoogle Scholar
  30. Merga G, Cass L, Chipman D, Meisel D (2008) Probing silver nanoparticles during catalytic H2 evolution. J Am Chem Soc 130:7067–7076CrossRefGoogle Scholar
  31. Panmand R, Patil R, Kale B, Nikam L, Kulkarni M, Thombre D, Gade W, Gosavi S (2014) Self assembly of nanostructured hexagonal cobalt dendrites: an efficient anti-coliform agent. RSC Adv 4:4586CrossRefGoogle Scholar
  32. Pearton S, Norton D, Ren F (2007) The promise and perils of wide-bandgap semiconductor nanowires for sensing, electronic and photonic applications. Small 3:1144CrossRefGoogle Scholar
  33. Pelgrift R, Friedman A (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803CrossRefGoogle Scholar
  34. Radzig MA, Nadtochenko V, Koksharova O, Kiwi J, Lipasova V, Khmel I (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300CrossRefGoogle Scholar
  35. Ronen A, Semiat R, Dosoretz C (2013) Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Res 47:6628CrossRefGoogle Scholar
  36. Sang L, Liao M, Sumiya M (2013) A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors 13:10482CrossRefGoogle Scholar
  37. Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42:1–7CrossRefGoogle Scholar
  38. Shi Z, Zhang Y, Cai X, Wang H, Wu B, Zhang J, Cui X, Dong X, Liang H, Zhang B, Du G (2014) Parametric study on the controllable growth of ZnO nanostructures with tunable dimensions using catalyst-free metal organic chemical vapor deposition. Cryst Eng Commun 16:455CrossRefGoogle Scholar
  39. Sriramulu D (2013) Evolution and impact of bacterial drug resistance in the context of cystic fibrosis disease and nosocomial settings. Microbiol Insights 6:29Google Scholar
  40. Sun F, Tan F, Wanga W, Qiao X, Qiu X (2012) Facile synthesis of Ag/ZnO heterostructure nanocrystals with enhanced photocatalytic performance. Mater Res Bull 47:3357CrossRefGoogle Scholar
  41. Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections. Future Microbiol 8:877CrossRefGoogle Scholar
  42. Tamboli M, Kulkarni M, Patil R, Gade W, Navale S, Kale B (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B 92:35CrossRefGoogle Scholar
  43. Wagh M, Patil R, Kale S, Thombre D, Gade W, Kulkarni M, Kale B (2013) Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol 97:3593CrossRefGoogle Scholar
  44. Wang Z, Chumanov G (2003) WO3 sol-gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv Mater 15:1285Google Scholar
  45. Wang L, Hu Q, Li Z, Guo J, Li Y (2012a) Microwave-assisted synthesis and photocatalytic performance of Ag-doped hierarchical ZnO architectures. Mater Lett 79:277CrossRefGoogle Scholar
  46. Wang S, Yu Y, Zuo Y, Li C, Yang J, Lu C (2012b) Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale 4:5895Google Scholar
  47. Warule S, Chaudhari N, Khare R, Ambekar J, More M, Kale B (2013) Single step hydrothermal approach for devising hierarchical Ag-ZnO heterostructures with significant enhancement in field emission performance. Eng Commun, Cryst. doi: 10.1039/C3CE40792F Google Scholar
  48. Wei Y, Kong J, Yang L, Ke L, Tan H, Liu H, Huang Y, Sun X, Lu X, Du H (2013) Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J Mater Chem A 1:5045CrossRefGoogle Scholar
  49. Xu C, Mei L (2013) Synthesis and enhanced photocatalytic activity of hierarchical ZnO nanostructures. J Nanosci Nanotechnol 13:513CrossRefGoogle Scholar
  50. Xu H, Qu F, Xu H, Lai W, Wang Y, Aguilar Z, Wei H (2012a) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli. Biometals 25:45CrossRefGoogle Scholar
  51. Xu N, Cui Y, Hu Z, Yu W, Sun J, Xu N, Wu J (2012b) Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Opt Express 20:14857CrossRefGoogle Scholar
  52. Yebra D, Kill S, Johansen K (2004) Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75CrossRefGoogle Scholar
  53. Zak K, Majid W, Wang H, Yousefi R, Golsheikh A,Ren Z (2013) Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason Sonochem 20:395Google Scholar
  54. Zeng H, Liu P, Cai W, Yang S, Xu X (2008) Controllable Pt/ZnO porous nanocages with improved photocatalytic activity. J Phys Chem C 112:19620Google Scholar
  55. Zhang A, Zhang L, Sui L, Qian D, Chen M (2013) Morphology-controllable synthesis of ZnO nano-micro-structures by a solvothermal process in ethanol solution. Cryst Res Technol 48:947CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Santosh S. Patil
    • 1
    • 3
  • Rajendra H. Patil
    • 2
  • Sheetal B. Kale
    • 2
  • Mohaseen S. Tamboli
    • 1
  • Jalindar D. Ambekar
    • 1
  • Wasudev N. Gade
    • 2
  • Sanjay S. Kolekar
    • 3
  • Bharat B. Kale
    • 1
  1. 1.Nanocomposite Laboratory, Department of Electronics and Information Technology (DeitY), Centre for Materials for Electronics TechnologyGovernment of IndiaPuneIndia
  2. 2.Department of BiotechnologySavitribai Phule Pune UnivesityPuneIndia
  3. 3.Analytical Chemistry and Material Science Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations