Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature

  • Thillai Sivakumar Natarajan
  • Hari C. Bajaj
  • Rajesh J. Tayade
Research Paper


The present study focused on photocatalytic oxidation of methanol to formaldehyde using nanocrystalline TiO2 (Degussa P-25) photocatalyst calcined at different temperature having different ratio of anatase (A)–rutile (R) phase composition under direct sunlight irradiation. The calcined nanocrystalline TiO2 was characterized using powder X-ray diffraction, N2 adsorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and UV–Visible diffuse reflectance spectroscopy techniques. The determination of hydroxyl radical formation during the course of the reaction was carried out using fluorescence technique with terephthalic acid as a probe molecule. The photocatalytic activity of catalysts was evaluated by methanol oxidation under direct sunlight irradiation and activity was compared with pure anatase TiO2. The result revealed that nanocrystalline TiO2 (P-25) calcined at 500 °C displays higher photocatalytic activity and the order of rate of HCHO formation is P25-500 (A74 %:R26 %) > P25 (A80 %:R20 %) > AT (A100 %) > P25-600 (A12 %:R88 %) > P25-700 (R100 %). The result also infers that TiO2 with mixed phase exhibit higher photocatalytic activity than TiO2 with pure anatase or rutile phase. The rapid transfer of photogenerated electron from rutile to anatase leads to increase in the charge separation and enhances the photocatalytic activity under direct sunlight irradiation. Effect of operational parameters like amount of catalyst and effect of reaction atmosphere have been investigated on the photocatalytic oxidation of methanol under direct sunlight irradiation.


Photocatalysis Degussa P-25 TiO2 Calcination Phase composition Sunlight Methanol oxidation Formaldehyde 



CSIR-CSMCRI Communication No. PRIS/154/2013. Authors are thankful to CSIR, New Delhi, India, for funding through Network Project on “Clean Coal Technologies (TapCoal)” (Project Number: CSC-0102). T S Natarajan thanks to CSIR, New Delhi for Senior Research Fellowship (File No: 31/28(162)/2012-EMR-I) and to AcSIR for enrolment in Ph.D. We also thankful to Analytical Discipline and Centralized Instrument Facility of the institute and Mr. Jayesh C. Chaudhari, Mr. Gopala Ram, Mr. V. K. Agarwal and Mr. K. Munusamy for kind support.


  1. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585CrossRefGoogle Scholar
  2. Bickley RI, Gonzalezcarreno T, Lees JS, Palmisano L, Tilley RJD (1991) A structural investigation of titanium-dioxide photocatalysts. J Solid State Chem 92:178–190CrossRefGoogle Scholar
  3. Carlson T, Griffin GL (1986) Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts. J Phys Chem 90:5896–5900CrossRefGoogle Scholar
  4. Chen J, Ollis DF, Rulkens WH, Bruning H (1999a) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence. Water Res 33:661–668CrossRefGoogle Scholar
  5. Chen J, Ollis DF, Rulkens WH, Bruning H (1999b) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): photocatalytic mechanisms. Water Res 33:669–676CrossRefGoogle Scholar
  6. Cong S, Xu YM (2011) Explaining the high photocatalytic activity of a mixed phase TiO2: a combined effect of O2 and crystallinity. J Phys Chem C 115:21161–21168CrossRefGoogle Scholar
  7. Emeline AV, Smirnova LG, Kuzmin GN, Basov LL, Serpone N (2002) Spectral dependence of quantum yields in gas–solid heterogeneous photosystems: Influence of anatase/rutile content on the photostimulated adsorption of dioxygen and dihydrogen on titania. J Photochem Photobiol A 148:97–102CrossRefGoogle Scholar
  8. Galian RE, Perez-Prieto J (2010) Catalytic processes activated by light. Energy Environ Sci 3:1488–1498CrossRefGoogle Scholar
  9. Goldstein S, Behar D, Rabani J (2008) Mechanism of visible light photocatalytic oxidation of methanol in aerated aqueous suspensions of carbon-doped TiO2. J Phys Chem C 112:15134–15139CrossRefGoogle Scholar
  10. Gorska P, Zaleska A, Kowalska E, Klimczuk T, Sobczak JW, Skwarek E, Janusz W, Hupka J (2008) TiO2 photoactivity in vis and UV light: the influence of calcination temperature and surface properties. Appl Catal B Environ 84:440–447CrossRefGoogle Scholar
  11. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  12. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549CrossRefGoogle Scholar
  13. Hurum DC, Gray KA, Rajh T, Thurnauer MC (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980CrossRefGoogle Scholar
  14. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210CrossRefGoogle Scholar
  15. Ismail AA (2012) Mesoporous PdO–TiO2 nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 117–118:67–72CrossRefGoogle Scholar
  16. Ismail AA, Bahnemann DW (2011) One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chem 13:428–435CrossRefGoogle Scholar
  17. Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J Phys Chem C 113:7429–7435CrossRefGoogle Scholar
  18. Ismail AA, Bahnemann DW, Robben L, Yarovyi V, Wark M (2010) Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chem Mater 22:108–116CrossRefGoogle Scholar
  19. Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2–TiO2 nanocomposites. Chem Phys Chem 12:982–991Google Scholar
  20. Ismail AA, Al-Sayari SA, Bahnemann DW (2013) Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation. Catal Today 209:2–7CrossRefGoogle Scholar
  21. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186CrossRefGoogle Scholar
  22. Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, Pan C (2012) Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J Phys Chem C 116:22619–22624CrossRefGoogle Scholar
  23. Leytner S, Hupp JT (2000) Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy. Chem Phys Lett 330:231–236CrossRefGoogle Scholar
  24. Liao JQ, Huang BY (2001) Particle size characterization of ultrafine tungsten powder. Int J Refract Met Hard Mater 19:89–99CrossRefGoogle Scholar
  25. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–738CrossRefGoogle Scholar
  26. Lira E, Wendt S, Huo P, Hansen J, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133:6529–6532CrossRefGoogle Scholar
  27. Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23:10916–10919CrossRefGoogle Scholar
  28. Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A 152:233–247CrossRefGoogle Scholar
  29. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603CrossRefGoogle Scholar
  30. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421Google Scholar
  31. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15(5):1–18CrossRefGoogle Scholar
  32. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89:303–317CrossRefGoogle Scholar
  33. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energy Rev 11:401–425CrossRefGoogle Scholar
  34. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86CrossRefGoogle Scholar
  35. Palmisano G, Garcia-Lopez E, Marci G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089CrossRefGoogle Scholar
  36. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349CrossRefGoogle Scholar
  37. Qin X, Jing LQ, Tian GH, Qu YC, Feng YJ (2009) Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. J Hazard Mater 172:1168–1174CrossRefGoogle Scholar
  38. Raj KJA, Viswanathan B (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem A 48:1378–1382Google Scholar
  39. Riegel G, Bolton JR (1995) Photocatalytic efficiency variability in TiO2 particles. J Phys Chem 99:4215–4224CrossRefGoogle Scholar
  40. Sato S, Kadowaki T, Yamaguti K (1984) Photocatalytic oxygen isotopic exchange between oxygen molecule and the lattice oxygen of TiO2 prepared from titanium hydroxide. J Phys Chem 88:2930–2931CrossRefGoogle Scholar
  41. Shannon RD, Pask JA (1965) Kinetics of the anatase–rutile transformation. J Am Ceram Soc 48:391–398CrossRefGoogle Scholar
  42. Sheldon RA, Arends IWCE, Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57:157–166CrossRefGoogle Scholar
  43. Sheldon RA, Arends IWCE, Ten Brink GJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781CrossRefGoogle Scholar
  44. Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photochem Photobiol C 9:157–170CrossRefGoogle Scholar
  45. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  46. Stafford U, Gray KA, Kamat PV, Varma A (1993) An Insitu Diffuse Reflectance FTIR Investigation of Photocatalytic Degradation of 4-Chlorophenol on a TiO2 Powder Surface. Chem Phys Lett 205:55–61CrossRefGoogle Scholar
  47. Su C, Hong BY, Tseng CM (2004) Sol–gel preparation and photocatalysis of titanium dioxide. Catal Today 96:119–126CrossRefGoogle Scholar
  48. Sun QO, Xu YM (2010) Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J Phys Chem C 114:18911–18918CrossRefGoogle Scholar
  49. Tayade RJ, Kulkarni RG, Jasra RV (2006) Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind Eng Chem Res 45:922–927CrossRefGoogle Scholar
  50. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462CrossRefGoogle Scholar
  51. Tayade RJ, Bajaj HC, Jasra RV (2011) Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts. Desalination 275:160–165CrossRefGoogle Scholar
  52. Thompson TL, Yates JT (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35:197–210CrossRefGoogle Scholar
  53. Wang CY, Rabani J, Bahnemann DW, Dohrmann JK (2002) Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J Photochem Photobiol A 148:169–176CrossRefGoogle Scholar
  54. Wang GH, Xu L, Zhang J, Yin T, Han D (2012) Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment, Int J Photoenergy, Article ID 265760Google Scholar
  55. Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851CrossRefGoogle Scholar
  56. Xiao Q, Ouyang LL (2009) Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem Eng J 148:248–253CrossRefGoogle Scholar
  57. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67CrossRefGoogle Scholar
  58. Xu YM, Langford CH (2011) UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: the influence of adsorption. Langmuir 17:897–902CrossRefGoogle Scholar
  59. Yamashita H, Harada M, Misaka J, Takeuchi M, Ichihashi Y, Goto F, Ishida M, Sasaki T, Anpo M (2001) Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. J Synchrotron Radiat 8:569–571CrossRefGoogle Scholar
  60. Yan J, Wu G, Guan N, Li L, Li Z, Cao X (2013) Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys Chem Chem Phys 15:10978–10988CrossRefGoogle Scholar
  61. Yu JG, Wang WG, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113:6743–6750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Thillai Sivakumar Natarajan
    • 1
    • 2
  • Hari C. Bajaj
    • 1
    • 2
  • Rajesh J. Tayade
    • 1
    • 3
  1. 1.Discipline of Inorganic Materials and Catalysis (DIMC), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)Council of Scientific and Industrial Research (CSIR)BhavnagarIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)Council of Scientific and Industrial Research (CSIR)BhavnagarIndia
  3. 3.Department of Environmental EngineeringKyungpook National University (KNU)DaeguRepublic of Korea

Personalised recommendations