Structural and photoelectrochemical properties of porous TiO2 nanofibers decorated with Fe2O3 by sol-flame

  • N. Sobti
  • A. Bensouici
  • F. Coloma
  • C. Untiedt
  • S. Achour
Research Paper


The hybrid structure of Fe2O3 nanoparticles/TiO2 nanofibers (NFs), combines the merits of large surface areas of TiO2 NFs and absorption in ultraviolet light–visible light range. This structure can be used for many applications such as photoelectrochemical water splitting and photo-catalysis. Here, a sol-flame method is used for depositing Fe2O3 on TiO2 NFs that were prepared by hydrothermal on Ti sheets. The obtained materials were characterized by XRD, SEM, UV/Vis diffuse reflectance, Raman, and XPS. The results revealed the formation of rutile and anatase crystalline phases together with Fe2O3. This process moves the absorption threshold of TiO2 NFs support into visible spectrum range and enhances the photocurrent in comparison to bare TiO2 NFs, although no hole scavenger was used. The impedance measurement at low and high frequencies revealed an increase in series resistance and a decrease in resistance of charge transfer with sol-flame treatment time. A mechanism for explaining the charge transfer in these TiO2 NFs decorated with Fe2O3 nanoparticles was proposed.


TiO2 nanofibers Sol-flame Photocurrent XPS Raman Composite nanomaterials 


  1. Amarjargal A, Jiang Z, Tijing LD, Park CH, Im IT, Kim CS (2013) Nanosheet-based α-Fe2O3 hierarchical structure decorated with TiO2 nanospheres via a simple one-pot route: magnetically recyclable photocatalysts. J Alloy Compd 580:143–147CrossRefGoogle Scholar
  2. Aronniemi M, Lahtinen J, Hautojärvi P (2004) Characterization of iron oxide thin films. Surf Interface Anal 36:1004–1006CrossRefGoogle Scholar
  3. Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powder produced by sol–gel syntheses. J Raman Spectrosc 30:355–360CrossRefGoogle Scholar
  4. Brambilla A, Calloni A, Berti G, Bussetti G, Duò L, Ciccacci F (2013) Growth and interface reactivity of titanium oxide thin films on Fe (001). J Phys Chem C 117:9229–9236CrossRefGoogle Scholar
  5. Cao H, Wang G, Zhang L, Liang Y, Zhang S, Zhang X (2006) Shape and magnetic properties of single-crystalline hematite (alpha-Fe2O3) nanocrystals. Chem Phys Chem 7:1897–1901Google Scholar
  6. Chetibi L, Hamana D, Achour S (2014) Growth and characterization of hydroxyapatite nanorice on TiO2 nanofibers. Mater Chem Phys 144:301–309Google Scholar
  7. Cho IS, Logar M, Lee CH, Cai L, Prinz FB, Zheng X (2014) Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett 14(1):24–31CrossRefGoogle Scholar
  8. Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404CrossRefGoogle Scholar
  9. De Faria DLA, Silva SV, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  10. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229Google Scholar
  11. Dohnálek Z, Lyubinetsky I, Rousseau R (2010) Thermally-driven processes on rutile TiO2 (110)−(1×1): a direct view at the atomic scale. Prog Surf Sci 85:161–205Google Scholar
  12. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108CrossRefGoogle Scholar
  13. Feng Y, Cho IS, Rao PM, Cai L, Zheng X (2013) Sol-flame synthesis: a general strategy to decorate nanowires with metal oxide/noble metal nanoparticles. Nano Lett 13:855–860CrossRefGoogle Scholar
  14. Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar AV, Zhang H (2003) Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem Phys Lett 379:373–379Google Scholar
  15. Fujii T, De Groot FMF, Sawatzky GA (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202CrossRefGoogle Scholar
  16. González-Elipe AR, Munuera G, Espinos JP, Sanz JM (1989) Compositional changes induced by 3.5 keV Ar+ ion bombardment in Ni–Ti oxide systems: a comparative study. Surf Sci 220:368–380CrossRefGoogle Scholar
  17. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  18. Hegazy A, Prouzet E (2012) Room temperature synthesis and thermal evolution of porous nanocrystalline TiO2 anatase. Chem Mater 24:245–254CrossRefGoogle Scholar
  19. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297Google Scholar
  20. Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:171–177CrossRefGoogle Scholar
  21. Kuang SY, Yang LX, Luo SL, Cai QY (2009) Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays. Appl Surf Sci 255:7385–7388Google Scholar
  22. Liu H, Gao L (2006) Preparation and properties of nanocrystalline α-Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst. J Am Ceram Soc 89:370–373CrossRefGoogle Scholar
  23. McCafferty E, Wightman JP (1992) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 143:92–100Google Scholar
  24. Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Sainio J, Kauppinen EI (2009) Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2:373–379CrossRefGoogle Scholar
  25. Niu M, Xu W, Shao X, Cheng D (2011) Enhanced photoelectrochemical performance of rutile TiO2 by Sb–N donor–acceptor co-incorporation from first principles calculations. Appl Phys Lett 99:203111–203113CrossRefGoogle Scholar
  26. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A 244(2):383–391CrossRefGoogle Scholar
  27. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRefGoogle Scholar
  28. Peter LM (2012) Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17:315–326Google Scholar
  29. Peter LM, Upul Wijayantha KG, Jason Riley D, Waggett JP (2003) Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J Phys Chem B 107:8378–8381Google Scholar
  30. Ricci PC, Carbonaro CM, Stagi L, Salis M, Casu A, Enzo S, Delogu F (2013) Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. J Phys Chem C 117:7850–7857CrossRefGoogle Scholar
  31. Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970Google Scholar
  32. Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange. J Hazard Mater 155:572–579CrossRefGoogle Scholar
  33. Wu Y, Long M, Cai W, Dai S, Chen C, Wu D, Bai J (2009) Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. J Nanotechnol 20:185703–185711CrossRefGoogle Scholar
  34. Xia Y, Yin L (2013) Core–shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region. Phys Chem Chem Phys 15:18627–18634CrossRefGoogle Scholar
  35. Xu Y, Schoonen MAA (2000) The absolute energy position of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556Google Scholar
  36. Yalçin Y, Kılıç M, Çınar Z (2010) Fe3+-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl Catal B 99:469–477CrossRefGoogle Scholar
  37. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRefGoogle Scholar
  38. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449Google Scholar
  39. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B 90:595–602CrossRefGoogle Scholar
  40. Yu L, Ruan H, Zheng Y, Li D (2013) A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology 24:375601–375611CrossRefGoogle Scholar
  41. Zhang X, Lei L (2008) Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition. Appl Surf Sci 254:2406–2412Google Scholar
  42. Zhang YG, Ma LL, Li JL, Yu Y (2007) In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation. Environ Sci Technol 41:6264–6269CrossRefGoogle Scholar
  43. Zhang J, Bang JH, Tang C, Kamat PV (2010) Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4:387–395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • N. Sobti
    • 1
  • A. Bensouici
    • 1
  • F. Coloma
    • 2
  • C. Untiedt
    • 2
  • S. Achour
    • 3
  1. 1.Ceramics Laboratory, Physics DepartmentConstantine University 1ConstantineAlgeria
  2. 2.LT-Nano Laboratory, Department of Applied PhysicsUniversidad de AlicanteAlicanteSpain
  3. 3.Ecole Nationale Polytechnique de ConstantineConstantineAlgeria

Personalised recommendations