Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

  • John J. Castillo
  • Tomas Rindzevicius
  • Kaiyu Wu
  • Michael S. Schmidt
  • Katarzyna A. Janik
  • Anja Boisen
  • Winnie Svendsen
  • Noemi Rozlosnik
  • Jaime Castillo-León
Research Paper


Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The surface analysis of PNT-FA indicated the presence of FA aggregates on the surface of PNTs. The covalent interaction between FA and self-assembled PNTs was further investigated using fluorescence microscopy, Raman and surface-enhanced Raman scattering (SERS) spectroscopies. The SERS experiments were performed on a large area silver-capped (diameter of 62 nm) silicon nanopillars with an approximate height of 400 nm and a width of 200 nm. The results showed that the PNT-FA synthesis procedure preserves the molecular structure of FA. The PNT-FA conjugate presented in this study is a promising candidate for applications in the detection and diagnosis of cancer or tropical diseases such as leishmaniasis and as a carrier nanosystem delivering drugs to malignant tumors that overexpress folate receptors.


Peptide nanotubes Folic acid Assembly SERS Drug delivery Biomedicine 



We are grateful for the financial support provided by H.C. Ørsted Postdoc Stipend, NanoPlasmonic sensors, Naplas and The Colombian Administrative Department of Science, Technology and Innovation, COLCIENCIAS.

Supplementary material

11051_2014_2525_MOESM1_ESM.docx (157 kb)
Supplementary material 1 (DOCX 157 kb)


  1. Castillo J, Torres M, Molina D, Svendsen W, Castillo-León J, Escobar P, Martínez F (2012) Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered NMR spectroscopy. Carbon 50:2691–2697CrossRefGoogle Scholar
  2. Castillo J, Bertel L, Páez-Mozo E, Martínez F (2013a) Photochemical synthesis of the bioconjugate folic acid-gold nanoparticles. Nanomater Nanotechnol 3:1–6CrossRefGoogle Scholar
  3. Castillo J, Svendsen W, Rozlosnik N, Escobar P, Martínez F, Castillo-León J (2013b) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 113:1026–1031CrossRefGoogle Scholar
  4. Castillo J, Rindzevicius T, Novoa L, Svendsen W, Rosloznik N, Boisen A, Escobar P, Martínez F, Castillo-León J (2013c) Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over-expressing folate receptors. J Mater Chem B 1:1475–1481CrossRefGoogle Scholar
  5. Castillo J, Rozo C, Castillo-León J, Rindzevicius T, Svendsen W, Rozlosnik N, Boisen A, Martínez F (2013d) Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chem Phys Lett 564:60–64CrossRefGoogle Scholar
  6. Chapman R, Jolliffe A, Perrier S (2011) Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polym Chem 2:1956–1963CrossRefGoogle Scholar
  7. Cipriano T, Takahashi P, de Lima D, Oliveira V, Souza J, Martinho H, Alves W (2010) Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 45:5101–5108CrossRefGoogle Scholar
  8. Clausen C, Jensen J, Castillo-León J, Dimaki M, Svendsen W (2008) Qualitative mapping of structurally different peptide nanotubes. Nano Lett 11:4066–4069CrossRefGoogle Scholar
  9. Couet J, Biesalski M (2008) Polymer-wrapped peptide nanotubes: peptide-grafted polymer mass impacts length and diameter. Small 7:1008–1016CrossRefGoogle Scholar
  10. Davies R (2006) Self-assembly beta-sheet tape forming peptides. Supramol Chem 18:435–443CrossRefGoogle Scholar
  11. Doll T, Raman S, Dey R, Burkhard P (2013) Nanoscale assemblies and their biomedical applications. J R Soc Interface 10:1–15CrossRefGoogle Scholar
  12. Fadeel B, García-Bennet A (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374CrossRefGoogle Scholar
  13. Gazit E (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J 274:317–322CrossRefGoogle Scholar
  14. Jain A, Kumar N, Lodhi N, Dubey V, Mishra D, Jain P, Jain N (2007) Toxicity issues related to biomedical applications of carbon nanotubes. J Nanomed Nanotechnol 3:140–149Google Scholar
  15. Kokaislová A, Matejka P (2012) Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used? Anal Bioanal Chem 403:985–993CrossRefGoogle Scholar
  16. Lakshmanan A, Zhang S, Hauser C (2012) Short self-assembling peptides as building blocks for modern nanodevices. Trends Biotechnol 30:155–165CrossRefGoogle Scholar
  17. Lee R, Low PJ (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. Biol Chem 4:3189–3197Google Scholar
  18. Lekprasert B, Sedman V, Roberts C, Tedler S, Nothinger I (2010) Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes. Opt Lett 35:4193CrossRefGoogle Scholar
  19. Liang L, Subirade M (2010) β-Lactoglobulin/folic acid complexes: formation, characterization, and biological implication. Phys Chem B 114:6707–6712CrossRefGoogle Scholar
  20. Mansoori G, Brandenburg K, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology. Cancers 2:1911–1928CrossRefGoogle Scholar
  21. Park B, Ko K, Yoon D, Kim D (2012) Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes. Enzym Microb Technol 51:81–85CrossRefGoogle Scholar
  22. Petrov A, Audette G (2012) Peptide and protein-based nanotubes for nanobiotechnology. Rev Nanomed NanoBiol 4:575–585CrossRefGoogle Scholar
  23. Porrata P, Goun E, Matsui H (2002) Size-controlled self-assembly of peptide nanotubes using polycarbonate membranes as templates. Chem Mater 14:4371–4377CrossRefGoogle Scholar
  24. Reches M, Gazit E (2007) Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions. J Nanosci Nanotechnol 7:2239–2245CrossRefGoogle Scholar
  25. Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrid. ACS Nano 5:6425–6433CrossRefGoogle Scholar
  26. Roger E, Kalscheuer S, Kirtane A, Raja B, Grill A, Whittum-Hudson J, Panyam J (2012) Folic acid-functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110CrossRefGoogle Scholar
  27. Rosenholm J, Meinander A, Peuhu E, Niemi R, Eriksson J, Sahlgren C (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206CrossRefGoogle Scholar
  28. Scanlon S, Aggeli A (2008) Self-assembly peptide nanotubes. Nanotoday 3:22–30CrossRefGoogle Scholar
  29. Schmidt M, Hübner J, Boisen A (2012) Nanopillars: large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv Mater 24:11–18Google Scholar
  30. Seabra A, Duran N (2013) Biological applications of peptide nanotubes: an overview. Peptides 39:47–54CrossRefGoogle Scholar
  31. Shekhar S, Anjia L, Matsui H, Khondaker S (2011) Electrical transport properties of peptide nanotubes coated with gold nanoparticles via peptide-induced biomineralization. Nanotechnology 22:1–4Google Scholar
  32. Silva R, Araújo D, Silva E, Ando R, Alves W (2013) L-diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity. Langmuir 29:10205–10212CrossRefGoogle Scholar
  33. Souza M, Jaques Y, Andrade G, Ribero A, da Silva E, Fileti E, Ávila E, Pinheiro M, Krambrock K, Alves W (2013) Structure and photophysical properties of peptide micro/nanotubes functionalized with hypericin. J Phys Chem B 117:2605–2614CrossRefGoogle Scholar
  34. Stokes R, McBride E, Wilson C, Girkin J, Smith W, Graham D (2008) Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique fort he detection of folic acid in water and human serum. Appl Spect 62:371–376CrossRefGoogle Scholar
  35. Tasis D, Tagmatagarchis N, Bianco N (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  36. Wang Y, Schlucker S (2013) Rational design and synthesis of SERS labels. Analyst 138:2224–2238CrossRefGoogle Scholar
  37. Wang Y, Chen L, Bing Y (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113:1391–1428CrossRefGoogle Scholar
  38. Wu W, Xiong S, Wang M, Shen J, Chu P (2012) Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes. Opt Exp 20:5119–5126CrossRefGoogle Scholar
  39. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • John J. Castillo
    • 1
    • 2
  • Tomas Rindzevicius
    • 1
  • Kaiyu Wu
    • 1
  • Michael S. Schmidt
    • 1
  • Katarzyna A. Janik
    • 3
  • Anja Boisen
    • 1
  • Winnie Svendsen
    • 1
  • Noemi Rozlosnik
    • 1
  • Jaime Castillo-León
    • 1
  1. 1.Department of Micro and NanotechnologyTechnical University of DenmarkLyngbyDenmark
  2. 2.Universidad Industrial de SantanderBucaramangaColombia
  3. 3.Center for Electron NanoscopyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations