Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo

  • Xiaona Ma
  • Chang Shu
  • Jing Guo
  • Lili Pang
  • Lin Su
  • Degang Fu
  • Wenying Zhong
Research Paper


A new targeted drug delivery system (DDS) based on oxidized single-wall carbon nanohorns (oxSWCNHs) was developed. Sodium alginate (SA) was used to modify oxSWCNHs to improve its dispersibility and biocompatibility, the first time such a modification to oxSWCNHs was reported. The humanized anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibody was bound to the SA as targeting group to selectively kill the tumor cells. Doxorubicin hydrochloride (DOX) was conjugated to oxSWCNHs in basic pH solution by π–π stacking, and its release was triggered by the lower pH as the micro-environment of the tumor. Quantitative analyses showed that the DOX@oxSWCNHs/SA complexes contained 1 g DOX per gram of oxSWCNHs. Cell experiment showed that the DOX@oxSWCNHs/SA-mAb effectively targeted the human breast adenocarcinoma (MCF-7) cells and rarely adhered to the human embryonic kidney 293 (HEK293) cells. And the anticancer effects of the complexes were higher than those of the free DOX. Pharmaceutical efficiency in vivo showed that the relative tumor volumes (RTV) of normal saline (NS) group, oxSWCNH/SA-mAb (2.5 mg/kg) group, DOX (2.5 mg/kg) group, and DOX@oxSWCNHs/SA-mAb (2.5 mg/kg) group were approximately 61, 56, 14, and 7.2, respectively. In addition, higher drug dose (5 mg/kg) of DOX@oxSWCNHs/SA-mAb resulted in a better antitumor activity. Histopathological studies in mice confirmed that the DOX@oxSWCNHs/SA-mAb complexes did not demonstrate any detectable hepatotoxicity, cardiotoxicity, and nephrotoxicity.

Graphical abstract


Oxidized single-wall carbon nanohorns Sodium alginate Doxorubicin hydrochloride Targeted drug delivery Antitumor efficacy Nanomedicine 



We are grateful for the financial support from the National Natural Science Foundation of China (No. 81173023 and No. 51172043). We are grateful to Dr. Juan Chen for helping with the TEM measurements. We appreciate Professor Yu Liu of Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University for their anti-VEGF monoclonal antibody.


  1. Bekyarova E, Kaneko K, Kasuya D, Murata K, Yudasaka M, Iijima S (2002) Oxidation and porosity evaluation of budlike single-wall carbon nanohorn aggregates. Langmuir 18(10):4138–4141CrossRefGoogle Scholar
  2. Bekyarova E, Kaneko K, Yudasaka M, Kasuya D, Iijima S, Huidobro A, Rodriguez-Reinoso F (2003) Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J Phys Chem B 107(19):4479–4484CrossRefGoogle Scholar
  3. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  4. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839CrossRefGoogle Scholar
  5. Fan J, Yudasaka M, Miyawaki J, Ajima K, Murata K, Iijima S (2006) Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J Phys Chem B 110(4):1587–1591CrossRefGoogle Scholar
  6. Fan X, Tan J, Zhang G, Zhang F (2007) Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18(19):195103CrossRefGoogle Scholar
  7. Fan J, Yuge R, Maigne A, Miyawaki J, Iijima S, Yudasaka M (2008) Effect of hole size on the incorporation of C60 molecules inside single-wall carbon nanohorns and their release. Carbon 46(13):1792–1794CrossRefGoogle Scholar
  8. Guerra J, Herrero MA, Carrion B, Pérez-Martínez FC, Lucío M, Rubio N, Meneghetti M, Prato M, Ceña V, Vázquez E (2012) Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 50(8):2832–2844CrossRefGoogle Scholar
  9. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813CrossRefGoogle Scholar
  10. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  11. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3):165–170CrossRefGoogle Scholar
  12. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365(1):143–149CrossRefGoogle Scholar
  13. Johnson RR, Johnson AC, Klein ML (2008) Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett 8(1):69–75CrossRefGoogle Scholar
  14. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48CrossRefGoogle Scholar
  15. Kobayashi K, Ueno H, Kokubo K, Yudasaka M, Yasuda H (2014) Effect of functional group polarity on the encapsulation of C60 derivatives in the inner space of carbon nanohorns. Carbon 68:346–351CrossRefGoogle Scholar
  16. Li Q, Sun B, Kinloch IA, Zhi D, Sirringhaus H, Windle AH (2006) Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem Mater 18(1):164–168CrossRefGoogle Scholar
  17. Liu Y, Liang P, Zhang HY, Guo DS (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2(7):874–878CrossRefGoogle Scholar
  18. Liu X, Li H, Wang F, Zhu S, Wang Y, Xu G (2010a) Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosens Bioelectron 25(10):2194–2199CrossRefGoogle Scholar
  19. Liu Y, Chipot C, Shao X, Cai W (2010b) Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B 114(17):5783–5789CrossRefGoogle Scholar
  20. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284CrossRefGoogle Scholar
  21. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1):47–61CrossRefGoogle Scholar
  22. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46(12 Part 1):6387–6392Google Scholar
  23. Matsumura S, Ajima K, Yudasaka M, Iijima S, Shiba K (2007) Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm 4(5):723–729CrossRefGoogle Scholar
  24. Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S (2008) Toxicity of single-walled carbon nanohorns. ACS Nano 2(2):213–226CrossRefGoogle Scholar
  25. Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tomida A, Tsuruo T, Ichihashi T, Fujinami T, Irie H (2009) Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3(6):1399–1406CrossRefGoogle Scholar
  26. Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG–doxorubicin conjugate. Mol Pharm 3(4):407–414CrossRefGoogle Scholar
  27. Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett 331(1):14–20Google Scholar
  28. Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Hirahara K, Yudasaka M, Iijima S (2001a) Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies. J Phys Chem B 105(42):10210–10216CrossRefGoogle Scholar
  29. Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Yudasaka M, Iijima S (2001b) Porosity evaluation of intrinsic intraparticle nanopores of single wall carbon nanohorn. Nano Lett 1(4):197–199CrossRefGoogle Scholar
  30. Nakamura M, Tahara Y, Ikehara Y, Murakami T, Tsuchida K, Iijima S, Waga I, Yudasaka M (2011) Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22(46):465102CrossRefGoogle Scholar
  31. Nakamura M, Tahara Y, Murakami T, Iijima S, Yudasaka M (2014) Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 69:409–416CrossRefGoogle Scholar
  32. Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 31(6):638–639Google Scholar
  33. Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H (2007) Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc 129(9):2448–2449CrossRefGoogle Scholar
  34. Pérez-Martínez FC, Carrión B, Lucío MI, Rubio N, Herrero MA, Vázquez E, Ceña V (2012) Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials 33:8152–8159CrossRefGoogle Scholar
  35. Petsalakis ID, Pagona G, Theodorakopoulos G, Tagmatarchis N, Yudasaka M, Iijima S (2006) Unbalanced strain-directed functionalization of carbon nanohorns: a theoretical investigation based on complementary methods. Chem Phys Lett 429(1–3):194–198CrossRefGoogle Scholar
  36. Pramoda K, Moses K, Ikram M, Vasu K, Govindaraj A, Rao C (2014) Synthesis, characterization and properties of single-walled carbon nanohorns. J Cluster Sci 25(1):173–188CrossRefGoogle Scholar
  37. Sakai S, Kawakami K (2007) Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater 3(4):495–501CrossRefGoogle Scholar
  38. Shu C, Li R, Guo J, Ding L, Zhong W (2013) New generation of β-cyclodextrin-chitosan nanoparticles encapsulated quantum dots loaded with anticancer drug for tumor-target drug delivery and imaging of cancer cells. J Nanopart Res 15(12):1–14CrossRefGoogle Scholar
  39. Tahara Y, Miyawaki J, Zhang M, Yang M, Waga I, Iijima S, Irie H, Yudasaka M (2011) Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22(26):265106CrossRefGoogle Scholar
  40. Valentini F, Ciambella E, Conte V, Sabatini L, Ditaranto N, Cataldo F, Palleschi G, Bonchio M, Giacalone F, Syrgiannis Z (2014) Highly selective detection of epinephrine at oxidized single-wall carbon nanohorns modified screen printed electrodes (SPEs). Biosens Bioelectron 59:94–98CrossRefGoogle Scholar
  41. Wang J, Hu Z, Xu J, Zhao Y (2014) Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater 6(2):e84CrossRefGoogle Scholar
  42. Whitney J, DeWitt M, Whited BM, Carswell W, Simon A, Rylander CG, Rylander MN (2013) 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology 24(27):275102CrossRefGoogle Scholar
  43. Xu J, Yudasaka M, Kouraba S, Sekido M, Yamamoto Y, Iijima S (2008) Single wall carbon nanohorn as a drug carrier for controlled release. Chem Phys Lett 461(4–6):189–192CrossRefGoogle Scholar
  44. Xu J, Zhang M, Nakamura M, Iijima S, Yudasaka M (2010) Double oxidation with oxygen and hydrogen peroxide for hole-forming in single wall carbon nanohorns. Appl Phys A 100(2):379–383CrossRefGoogle Scholar
  45. Yamashita T, Yamashita K, Nabeshi H, Yoshikawa T, Yoshioka Y, Tsunoda S-I, Tsutsumi Y (2012) Carbon nanomaterials: efficacy and safety for nanomedicine. Materials 5(2):350–363CrossRefGoogle Scholar
  46. Yang C-M, Kasuya D, Yudasaka M, Iijima S, Kaneko K (2004) Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J Phys Chem B 108(46):17775–17782CrossRefGoogle Scholar
  47. Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M (2012) A high poly (ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly (ethylene glycol) and macrophage uptake. Acta Biomater 9(1):4744–4753CrossRefGoogle Scholar
  48. Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M (2013) A high poly (ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly (ethylene glycol) and macrophage uptake. Acta Biomater 9(1):4744–4753CrossRefGoogle Scholar
  49. Yang F, Han J, Zhuo Y, Yang Z, Chai Y, Yuan R (2014) Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens Bioelectron 55:360–365CrossRefGoogle Scholar
  50. Yuan Q, Hein S, Misra RD (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739CrossRefGoogle Scholar
  51. Yuge R, Yudasaka M, Miyawaki J, Kubo Y, Isobe H, Yorimitsu H, Nakamura E, Iijima S (2007) Plugging and unplugging holes of single-wall carbon nanohorns. J Phys Chem C 111:7348–7351CrossRefGoogle Scholar
  52. Zhang M, Yudasaka M (2014) Potential application of nanocarbons as a drug delivery system. Carbon 69:642CrossRefGoogle Scholar
  53. Zhang M, Yudasaka M, Ajima K, Miyawaki J, Iijima S (2007) Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1(4):265–272CrossRefGoogle Scholar
  54. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047CrossRefGoogle Scholar
  55. Zhang J, Ge J, Shultz MD, Chung E, Singh G, Shu C, Fatouros PP, Henderson SC, Corwin FD, Geohegan DB (2010) In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett 10(8):2843–2848CrossRefGoogle Scholar
  56. Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538–2549CrossRefGoogle Scholar
  57. Zimmermann KA, Inglefield DL Jr, Zhang J, Dorn HC, Long TE, Rylander CG, Rylander MN (2014) Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport. J Nanopart Res 16(1):1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiaona Ma
    • 1
  • Chang Shu
    • 1
  • Jing Guo
    • 1
  • Lili Pang
    • 1
  • Lin Su
    • 3
  • Degang Fu
    • 3
  • Wenying Zhong
    • 1
    • 2
  1. 1.Department of Analytical ChemistryChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Key Laboratory for Drug Quality Control and Pharmacovigilance of Ministry of EducationChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  3. 3.State Key Laboratory of BioelectronicsSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations