Skip to main content

Advertisement

Log in

Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new targeted drug delivery system (DDS) based on oxidized single-wall carbon nanohorns (oxSWCNHs) was developed. Sodium alginate (SA) was used to modify oxSWCNHs to improve its dispersibility and biocompatibility, the first time such a modification to oxSWCNHs was reported. The humanized anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibody was bound to the SA as targeting group to selectively kill the tumor cells. Doxorubicin hydrochloride (DOX) was conjugated to oxSWCNHs in basic pH solution by π–π stacking, and its release was triggered by the lower pH as the micro-environment of the tumor. Quantitative analyses showed that the DOX@oxSWCNHs/SA complexes contained 1 g DOX per gram of oxSWCNHs. Cell experiment showed that the DOX@oxSWCNHs/SA-mAb effectively targeted the human breast adenocarcinoma (MCF-7) cells and rarely adhered to the human embryonic kidney 293 (HEK293) cells. And the anticancer effects of the complexes were higher than those of the free DOX. Pharmaceutical efficiency in vivo showed that the relative tumor volumes (RTV) of normal saline (NS) group, oxSWCNH/SA-mAb (2.5 mg/kg) group, DOX (2.5 mg/kg) group, and DOX@oxSWCNHs/SA-mAb (2.5 mg/kg) group were approximately 61, 56, 14, and 7.2, respectively. In addition, higher drug dose (5 mg/kg) of DOX@oxSWCNHs/SA-mAb resulted in a better antitumor activity. Histopathological studies in mice confirmed that the DOX@oxSWCNHs/SA-mAb complexes did not demonstrate any detectable hepatotoxicity, cardiotoxicity, and nephrotoxicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bekyarova E, Kaneko K, Kasuya D, Murata K, Yudasaka M, Iijima S (2002) Oxidation and porosity evaluation of budlike single-wall carbon nanohorn aggregates. Langmuir 18(10):4138–4141

    Article  Google Scholar 

  • Bekyarova E, Kaneko K, Yudasaka M, Kasuya D, Iijima S, Huidobro A, Rodriguez-Reinoso F (2003) Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J Phys Chem B 107(19):4479–4484

    Article  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

    Article  Google Scholar 

  • Fan J, Yudasaka M, Miyawaki J, Ajima K, Murata K, Iijima S (2006) Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J Phys Chem B 110(4):1587–1591

    Article  Google Scholar 

  • Fan X, Tan J, Zhang G, Zhang F (2007) Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18(19):195103

    Article  Google Scholar 

  • Fan J, Yuge R, Maigne A, Miyawaki J, Iijima S, Yudasaka M (2008) Effect of hole size on the incorporation of C60 molecules inside single-wall carbon nanohorns and their release. Carbon 46(13):1792–1794

    Article  Google Scholar 

  • Guerra J, Herrero MA, Carrion B, Pérez-Martínez FC, Lucío M, Rubio N, Meneghetti M, Prato M, Ceña V, Vázquez E (2012) Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 50(8):2832–2844

    Article  Google Scholar 

  • Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3):165–170

    Article  Google Scholar 

  • Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365(1):143–149

    Article  Google Scholar 

  • Johnson RR, Johnson AC, Klein ML (2008) Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett 8(1):69–75

    Article  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  • Kobayashi K, Ueno H, Kokubo K, Yudasaka M, Yasuda H (2014) Effect of functional group polarity on the encapsulation of C60 derivatives in the inner space of carbon nanohorns. Carbon 68:346–351

    Article  Google Scholar 

  • Li Q, Sun B, Kinloch IA, Zhi D, Sirringhaus H, Windle AH (2006) Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem Mater 18(1):164–168

    Article  Google Scholar 

  • Liu Y, Liang P, Zhang HY, Guo DS (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2(7):874–878

    Article  Google Scholar 

  • Liu X, Li H, Wang F, Zhu S, Wang Y, Xu G (2010a) Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosens Bioelectron 25(10):2194–2199

    Article  Google Scholar 

  • Liu Y, Chipot C, Shao X, Cai W (2010b) Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B 114(17):5783–5789

    Article  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284

    Article  Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1):47–61

    Article  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46(12 Part 1):6387–6392

    Google Scholar 

  • Matsumura S, Ajima K, Yudasaka M, Iijima S, Shiba K (2007) Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm 4(5):723–729

    Article  Google Scholar 

  • Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S (2008) Toxicity of single-walled carbon nanohorns. ACS Nano 2(2):213–226

    Article  Google Scholar 

  • Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tomida A, Tsuruo T, Ichihashi T, Fujinami T, Irie H (2009) Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3(6):1399–1406

    Article  Google Scholar 

  • Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG–doxorubicin conjugate. Mol Pharm 3(4):407–414

    Article  Google Scholar 

  • Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett 331(1):14–20

    Google Scholar 

  • Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Hirahara K, Yudasaka M, Iijima S (2001a) Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies. J Phys Chem B 105(42):10210–10216

    Article  Google Scholar 

  • Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Yudasaka M, Iijima S (2001b) Porosity evaluation of intrinsic intraparticle nanopores of single wall carbon nanohorn. Nano Lett 1(4):197–199

    Article  Google Scholar 

  • Nakamura M, Tahara Y, Ikehara Y, Murakami T, Tsuchida K, Iijima S, Waga I, Yudasaka M (2011) Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22(46):465102

    Article  Google Scholar 

  • Nakamura M, Tahara Y, Murakami T, Iijima S, Yudasaka M (2014) Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 69:409–416

    Article  Google Scholar 

  • Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 31(6):638–639

    Google Scholar 

  • Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H (2007) Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc 129(9):2448–2449

    Article  Google Scholar 

  • Pérez-Martínez FC, Carrión B, Lucío MI, Rubio N, Herrero MA, Vázquez E, Ceña V (2012) Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials 33:8152–8159

    Article  Google Scholar 

  • Petsalakis ID, Pagona G, Theodorakopoulos G, Tagmatarchis N, Yudasaka M, Iijima S (2006) Unbalanced strain-directed functionalization of carbon nanohorns: a theoretical investigation based on complementary methods. Chem Phys Lett 429(1–3):194–198

    Article  Google Scholar 

  • Pramoda K, Moses K, Ikram M, Vasu K, Govindaraj A, Rao C (2014) Synthesis, characterization and properties of single-walled carbon nanohorns. J Cluster Sci 25(1):173–188

    Article  Google Scholar 

  • Sakai S, Kawakami K (2007) Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater 3(4):495–501

    Article  Google Scholar 

  • Shu C, Li R, Guo J, Ding L, Zhong W (2013) New generation of β-cyclodextrin-chitosan nanoparticles encapsulated quantum dots loaded with anticancer drug for tumor-target drug delivery and imaging of cancer cells. J Nanopart Res 15(12):1–14

    Article  Google Scholar 

  • Tahara Y, Miyawaki J, Zhang M, Yang M, Waga I, Iijima S, Irie H, Yudasaka M (2011) Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22(26):265106

    Article  Google Scholar 

  • Valentini F, Ciambella E, Conte V, Sabatini L, Ditaranto N, Cataldo F, Palleschi G, Bonchio M, Giacalone F, Syrgiannis Z (2014) Highly selective detection of epinephrine at oxidized single-wall carbon nanohorns modified screen printed electrodes (SPEs). Biosens Bioelectron 59:94–98

    Article  Google Scholar 

  • Wang J, Hu Z, Xu J, Zhao Y (2014) Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater 6(2):e84

    Article  Google Scholar 

  • Whitney J, DeWitt M, Whited BM, Carswell W, Simon A, Rylander CG, Rylander MN (2013) 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology 24(27):275102

    Article  Google Scholar 

  • Xu J, Yudasaka M, Kouraba S, Sekido M, Yamamoto Y, Iijima S (2008) Single wall carbon nanohorn as a drug carrier for controlled release. Chem Phys Lett 461(4–6):189–192

    Article  Google Scholar 

  • Xu J, Zhang M, Nakamura M, Iijima S, Yudasaka M (2010) Double oxidation with oxygen and hydrogen peroxide for hole-forming in single wall carbon nanohorns. Appl Phys A 100(2):379–383

    Article  Google Scholar 

  • Yamashita T, Yamashita K, Nabeshi H, Yoshikawa T, Yoshioka Y, Tsunoda S-I, Tsutsumi Y (2012) Carbon nanomaterials: efficacy and safety for nanomedicine. Materials 5(2):350–363

    Article  Google Scholar 

  • Yang C-M, Kasuya D, Yudasaka M, Iijima S, Kaneko K (2004) Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J Phys Chem B 108(46):17775–17782

    Article  Google Scholar 

  • Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M (2012) A high poly (ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly (ethylene glycol) and macrophage uptake. Acta Biomater 9(1):4744–4753

    Article  Google Scholar 

  • Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M (2013) A high poly (ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly (ethylene glycol) and macrophage uptake. Acta Biomater 9(1):4744–4753

    Article  Google Scholar 

  • Yang F, Han J, Zhuo Y, Yang Z, Chai Y, Yuan R (2014) Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens Bioelectron 55:360–365

    Article  Google Scholar 

  • Yuan Q, Hein S, Misra RD (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739

    Article  Google Scholar 

  • Yuge R, Yudasaka M, Miyawaki J, Kubo Y, Isobe H, Yorimitsu H, Nakamura E, Iijima S (2007) Plugging and unplugging holes of single-wall carbon nanohorns. J Phys Chem C 111:7348–7351

    Article  Google Scholar 

  • Zhang M, Yudasaka M (2014) Potential application of nanocarbons as a drug delivery system. Carbon 69:642

    Article  Google Scholar 

  • Zhang M, Yudasaka M, Ajima K, Miyawaki J, Iijima S (2007) Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1(4):265–272

    Article  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047

    Article  Google Scholar 

  • Zhang J, Ge J, Shultz MD, Chung E, Singh G, Shu C, Fatouros PP, Henderson SC, Corwin FD, Geohegan DB (2010) In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett 10(8):2843–2848

    Article  Google Scholar 

  • Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538–2549

    Article  Google Scholar 

  • Zimmermann KA, Inglefield DL Jr, Zhang J, Dorn HC, Long TE, Rylander CG, Rylander MN (2014) Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport. J Nanopart Res 16(1):1–18

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (No. 81173023 and No. 51172043). We are grateful to Dr. Juan Chen for helping with the TEM measurements. We appreciate Professor Yu Liu of Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University for their anti-VEGF monoclonal antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Shu, C., Guo, J. et al. Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo. J Nanopart Res 16, 2497 (2014). https://doi.org/10.1007/s11051-014-2497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2497-9

Keywords

Navigation