Improvement of output performance of solar cells using small nanoparticles

  • Xiaoyu Wang
  • Jinliang Wang
  • Hai Wang
Research Paper


The influence of small gold nanoparticles (NPs) on the output performance of solar cells has been investigated. The gold NPs with 9 nm average particle size are deposited on the surfaces of crystalline Si solar cells by magnetron sputtering. The effect of NP surface coverage on the electrical performance of solar cells is investigated firstly. Our results show that the electrical performance of solar cells can be tuned by the NP surface coverage. The optimal performances are obtained. When the surface coverage of NPs is 11.4 %, a 7 % increase of short-circuit current (I sc) and a 10 % increase of efficiency (η) are observed experimentally. Then, the all-day electric energy production of solar cells is investigated using angular (θ) distribution. These data indicate that the output performance of optimal cell can be improved by the small gold NPs. A 10 % increase of half peak height of maximum power (P m) is observed.


Small gold nanoparticle Output performance Surface coverage Angular distribution Energy conversion 



This work is supported by the National Natural Science Foundation of China (Grant No. 10904097) and the Scientific Research Project of Beijing Municipal Commission of Education and Beijing Natural Science Foundation (Grant No. KZ201310028032).


  1. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800. doi: 10.1364/OE.16.021793 CrossRefGoogle Scholar
  2. Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light: Sci Appl 2:92. doi: 10.1038/lsa.2013.48 CrossRefGoogle Scholar
  3. Deepa KG, Lekha P, Sindhu S (2012) Efficiency enhancement in DSSC using metal nanoparticles: a size dependent study. Sol Energy 86:326–330. doi: 10.1016/j.solener.2011.10.007 CrossRefGoogle Scholar
  4. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103. doi: 10.1063/1.2336629 CrossRefGoogle Scholar
  5. Guo K, Li M, Fang X, Liu X, Zhu Y, Hu Z, Zhao X (2013) Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core-shell structure in TiO2 films. J Mater Chem A 1:7229–7234. doi: 10.1039/c3ta10495h CrossRefGoogle Scholar
  6. Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110. doi: 10.1063/1.2840676 CrossRefGoogle Scholar
  7. Jeong NC, Prasittichai C, Hupp JT (2011) Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir 27:14609–14614. doi: 10.1021/la203557f CrossRefGoogle Scholar
  8. Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309. doi: 10.1063/1.2733649 CrossRefGoogle Scholar
  9. Lin HY, Kuo Y, Liao CY, Yang CC, Kiang YW (2012) Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures. Opt Express 20:A104–A118. doi: 10.1364/OE.20.00A104 CrossRefGoogle Scholar
  10. Liu W, Wang X, Li Y, Geng Z, Yang F, Li J (2011) Surface plasmon enhanced GaAs thin film solar cells. Sol Energy Mat Sol Cells 95:693–698. doi: 10.1016/j.solmat.2010.10.004 CrossRefGoogle Scholar
  11. Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93:113108. doi: 10.1063/1.2957980 CrossRefGoogle Scholar
  12. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105. doi: 10.1063/1.2734885 CrossRefGoogle Scholar
  13. Resta V, Caricato AP, Loiudice A, Rizzo A, Gigli G, Taurino A, Catalano M, Martino M (2013) Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells. J Nanopart Res 15:2017. doi: 10.1007/s11051-013-2017-3 CrossRefGoogle Scholar
  14. Rockstuhl C, Fahr S, Lederer F (2008) Absorption enhancement in solar cells by localized plasmon polaritons. J Appl Phys 104:123102. doi: 10.1063/1.3037239 CrossRefGoogle Scholar
  15. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106. doi: 10.1063/1.1855423 CrossRefGoogle Scholar
  16. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817. doi: 10.1063/1.122903 CrossRefGoogle Scholar
  17. Sundararajan SP, Grady NK, Mirin N, Halas NJ (2008) Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett 8:624–630. doi: 10.1021/nl073030+ CrossRefGoogle Scholar
  18. Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mat Sol Cells 93:1978–1985. doi: 10.1016/j.solmat.2009.07.014 CrossRefGoogle Scholar
  19. Xu R, Wang X-D, Liu W, Xu X-N, Li Y-Q, Ji A, Yang F-H, Li J-M (2012) Dielectric layer-dependent surface plasmon effect of metallic nanoparticles on silicon substrate. Chin Phys B 21:025202. doi: 10.1088/1674-1056/21/2/025202 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  2. 2.Center for Condensed Matter Physics, Department of PhysicsCapital Normal UniversityBeijingChina

Personalised recommendations