Advertisement

Core–shell cermet condensates by pulsed-laser ablation on Zn in TEOS

  • Bo-Cheng Lin
  • Pouyan Shen
  • Shuei-Yuan Chen
Research Paper

Abstract

Spherical cermet condensates with metallic Zn core and specific shell types, both having significant internal compressive stress, were fabricated by pulsed-laser ablation on Zn target in TEOS for X-ray/electron diffraction and spectroscopic characterizations. The nanosized Zn cores have 1-D commensurate (0001) superstructure and wurtzite-type ZnO shell following almost parallel epitaxy relationship, i.e., basal planes exactly in parallel but others slightly off, across a semicoherent interface. The submicron-sized Zn condensates were free of superstructure and encapsulated by a Si–H-signified turbostratic graphite shell. The defective cermet condensates thus fabricated showed UV–Vis photoemission and absorption with a minimum band gap of 1.95 eV for potential optoelectronic and catalytic applications.

Keywords

Core–shell Cermet Nanocondensates Pulsed-laser ablation in liquid TEOS Synthesis 

Notes

Acknowledgments

We thank Miss S.Y. Shih for the help on XPS analysis and anonymous referees for constructive comments. This work was supported by the Center for Nanoscience and Nanotechnology at NSYSU and the National Science Council, Taiwan, ROC.

Supplementary material

11051_2014_2444_MOESM1_ESM.doc (294 kb)
Supplementary material 1 (DOC 294 kb)

References

  1. Baneyeva MI, Popova SV (1969) A study of zinc hydroxide at high pressures and temperatures. Geochem Int 6:807–809Google Scholar
  2. Bunting EN (1930) Phase equilibria in the system SiO2–ZnO. J Am Ceram Soc 13:5–10CrossRefGoogle Scholar
  3. Chen SY, Shen P (2002) Laser ablation condensation of α-PbO2 type TiO2. Phys Rev Lett 89:096106-1–096106-4Google Scholar
  4. Chen J, Steckl AJ, Loboda MJ (1998) Molecular beam epitaxy growth of SiC on Si(111) from silacyclobutan. J Vac Sci Technol B 16:1305–1308CrossRefGoogle Scholar
  5. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  6. Choyke WJ, Matsunami H, Pensl G (eds) (1997) Fundamental questions and applications of SiC. Special issue of physica status solidi, vol 202. Wiley, BerlinGoogle Scholar
  7. Cusco R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan M (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202CrossRefGoogle Scholar
  8. Deroubaix G, Marcus P (1992) X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surf Interface Anal 18:39–46CrossRefGoogle Scholar
  9. Duffy JA (1990) Bonding, energy levels and bands in inorganic solids. Longman Scientific & Technical, Essex, p 249Google Scholar
  10. Filipponi A, Fiorini P, Evangelisti F, Balerna A, Mobilio S (1986) Amorphous hydrogenated alloys: a comparative EXAFS study of a-Si1-xCx:H, a-Si1-xGex:H, a-SiNx: H at the silicon K-edge. J Phys 47(C8):357–361Google Scholar
  11. Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73:165317CrossRefGoogle Scholar
  12. French RH, Abou-Rahme R, Jones DJ, McNeil LE (1992) Absorption edge and band gap of SiO2 glass. Ceram Trans 28:63–80Google Scholar
  13. Goldshleger UI, Merzhanov AG (1983) Dokl Phys Chem (Engl Transl) 269:238–242 see also Figure 8696 of Levin EM, Robbins CR, McMurdie HF, Reser M (1964–1989) Phase diagrams for ceramists. American Ceramic SocietyGoogle Scholar
  14. Harima H (2006) Raman scattering characterization on SiC. Microelectron Eng 83:126–129CrossRefGoogle Scholar
  15. Hartman P, Perdok WG (1955a) On the relations between structure and morphology of crystals I. Acta Crystallogr 8:49–52CrossRefGoogle Scholar
  16. Hartman P, Perdok WG (1955b) On the relations between structure and morphology of crystals II. Acta Crystallogr 8:521–524CrossRefGoogle Scholar
  17. Huang BH, Shen P, Chen SY (2008a) {\(10\bar{1}1\)} artificial epitaxy of ZnO on glass via pulse laser deposition. J Eur Ceram Soc 28:2545–2555Google Scholar
  18. Huang BH, Chen SY, Shen P (2008b) {10\(\bar{1}\)1} and {11\(\overline{2}\)1}-specific growth and twinning of ZnO whiskers. J Phys Chem C 112:1064–1071Google Scholar
  19. Huang BH, Shen P, Chen SY (2009a) Electron irradiation induced rock salt type structure from ZnO/Zn intergrowth. J Eur Ceram Soc 29:743–750CrossRefGoogle Scholar
  20. Huang BH, Shen P, Chen SY (2009b) Tapered ZnO whiskers: {hkil}-specific mosaic twinning VLS growth from a partially molten bottom source. Nanoscale Res Lett 4:503–512CrossRefGoogle Scholar
  21. Huang CN, Chen SY, Zheng Y, Shen P (2009c) Water-driven assembly of laser ablation-induced Au condensates as mesomorphic nano- and micro-tubes. Nanoscale Res Lett 4:1064–1072CrossRefGoogle Scholar
  22. Ishikawa Y, Shimizu Y, Sasaki T, Koshizaki N (2006) Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. J Colloid Interface Sci 300:612–615CrossRefGoogle Scholar
  23. Itoh A, Matsunami H (1997) Single crystal growth of SiC and electronic devices. Crit Rev Solid State Mater Sci 22:111–197CrossRefGoogle Scholar
  24. Jing L, Xu Z, Shang J, Sun X, Cai W, Guo H (2001) The preparation and characterization of ZnO ultrafine particles. Mater Sci Eng A 332:356–361Google Scholar
  25. Kaneko T, Nemoto D, Horiguchi A, Miyakawa N (2005) FTIR analysis of a-SiC: H films grown by plasma enhanced CVD. J Cryst Growth 275:1097–1101CrossRefGoogle Scholar
  26. Kang JS, Kang HS, Pang SS, Shim ES, Lee SY (2003) Investigation on the origin of green luminescence from laser-ablated ZnO thin film. Thin Solid Film 443:5–8CrossRefGoogle Scholar
  27. Kim R, Qin W, Wei G, Wang G, Wang L, Zhang D, Zheng K, Liu N (2009) A simple synthesis of large-scale SiC–SiO2 nanocables by using thermal decomposition of methanol: structure, FTIR, Raman and PL characterization. J Cryst Growth 311:4301–4305CrossRefGoogle Scholar
  28. Kwon YJ, Kim KH, Lim CS, Shim KB (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route. J Ceram Process Res 3:146–149Google Scholar
  29. Late DJ, More MA, Joag DS, Misra P, Singh BN, Kukreja LM (2006) Field emission studies on well adhered pulsed laser deposited LaB6 onW tip. Appl Phys Lett 89:123510CrossRefGoogle Scholar
  30. Late DJ, More MA, Misra P, Singh BN, Kukreja LM, Joag DS (2007) Field emission studies of pulsed laser deposited LaB6 films on W and Re. Ultramicroscopy 107:825–832CrossRefGoogle Scholar
  31. Late DJ, Date KS, More MA, Misra P, Singh BN, Kukreja LM, Dharmadhikari CV, Joag DS (2008a) Enhanced field emission from LaB6 thin films with nanoprotrusions grown by pulsed laser deposition on Zr foil. Appl Surf Sci 254:3601–3605CrossRefGoogle Scholar
  32. Late DJ, Date KS, More MA, Misra P, Singh BN, Kukreja LM, Dharmadhikari CV, Joag DS (2008b) Some aspects of pulsed laser deposited nanocrystalline LaB6 film: atomic force microscopy, constant force current imaging and field emission investigations. Nanotechnology 19:265605CrossRefGoogle Scholar
  33. Late DJ, Misra P, Singh BN, Kukreja LM, Joag DS, More MA (2009a) Enhanced field emission from pulsed laser deposited nanocrystalline ZnO thin films on Re and W. Appl Phys A 95:613–620CrossRefGoogle Scholar
  34. Late DJ, Singh VR, Sinha S, More MA, Dasgupta K, Joag DS (2009b) Synthesis of LaB6 micro/nano structures using picosecond (Nd:YAG) laser and its field emission investigations. Appl Phys A 97:905–909CrossRefGoogle Scholar
  35. Late DJ, More MA, Sinha S, Dasgupta K, Misra P, Singh BN, Kukreja LM, Bhoraskar SV, Joag DS (2011) Synthesis and characterization of LaB6 thin films on tungsten, rhenium, silicon and other substrates and their investigations as field emitters. Appl Phys A 104:677–685CrossRefGoogle Scholar
  36. Laughlin RB (1980) Optical absorption edge of SiO2. Phys Rev B 22:3021–3029CrossRefGoogle Scholar
  37. Lee ST, Peng HY, Zhou XT, Wang N, Lee CS, Bello I, Lifshitz Y (2000) A nucleation site and mechanism leading to epitaxial growth of diamond films. Science 287:104–106CrossRefGoogle Scholar
  38. Levin EM, Robbins CR, McMurdie HF, Reser MK (1964–1989) Phase diagrams for ceramists. American Ceramic Society, ColumbusGoogle Scholar
  39. Li JW, Yang LW, Zhou ZF, Chu PK, Wang XH, Zhou J, Li LT, Sun CQ (2010) Band gap modulation in ZnO by size, pressure, and temperature. J Phys Chem C 114:13370–13374CrossRefGoogle Scholar
  40. Liang CH, Shimizu Y, Masuda M, Sasaki T, Koshizaki N (2004) Preparation of layered zinc hydroxide/surfactant nanocomposite by pulsed-laser ablation in a liquid Medium. Chem Mater 16:963–965CrossRefGoogle Scholar
  41. Lin CC, Shen P (1994a) Nonisothermal site saturation during transformation of Zn2SiO4. J Solid State Chem 112:387–391CrossRefGoogle Scholar
  42. Lin CC, Shen P (1994b) Sol-gel synthesis of zinc orthosilicate. J Noncryst Solids 171:281–289CrossRefGoogle Scholar
  43. Lin CC, Shen P (1994c) The role of Ti4+ on the structure and transformations of gel-produced Zn2SiO4. J Solid State Chem 112:381–386CrossRefGoogle Scholar
  44. Lin BC, Shen P, Chen SY (2011) ZnO and ε-Zn(OH)2 composite nanoparticles by PLAL. J Phys Chem C 115:5003–5010CrossRefGoogle Scholar
  45. Liu LG, Bassett WA (1986) Elements, oxides, and silicates: high-pressure phases with implications for the earth’s interior. Oxford University Press, New York, p 209Google Scholar
  46. Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study. Am Mineral 65:690–710Google Scholar
  47. Qian J, Wang J, Jin Z (2004) Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Mater Sci Eng A 371:229–235CrossRefGoogle Scholar
  48. Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219CrossRefGoogle Scholar
  49. Singh J, Kumar P, Late DJ, Singh T, More MA, Joag DS, Tiwari RS, Hui KS, Srivastava ON (2012) Optical and field emission properties in different nanostructures of ZnO. Dig J Nanomater Biostruct 7:525–536Google Scholar
  50. Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124CrossRefGoogle Scholar
  51. Wang Y, Wang H, Ma G (1998) Effects of high-temperature annealing on the structure of reactive sputtering a-SiC: H films. Thin Solid Films 335:249–252CrossRefGoogle Scholar
  52. Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York, p 445CrossRefGoogle Scholar
  53. Xu J, Ji W, Wang XB, Shu H, Tang SH (1998) Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. J Raman Spectrosc 29:613–615CrossRefGoogle Scholar
  54. Zeng H, Cai W, Hu J, Duan G, Liu P, Li Y (2006) Violet photoluminescence from shell layer of Zn/ZnO core–shell nanoparticles induced by laser ablation. Appl Phys Lett 88:171910CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Materials and Optoelectronic ScienceNational Sun Yat-sen UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Mechanical and Automation EngineeringI-Shou UniversityKaohsiungTaiwan, ROC

Personalised recommendations