The acute cytotoxicity of bismuth ferrite nanoparticles on PC12 cells

  • Qin Song
  • Yongping Liu
  • Ziyun Jiang
  • Mingliang Tang
  • Ning Li
  • Fenfen Wei
  • Guosheng Cheng
Research Paper


Due to its unique properties, bismuth ferrite (BiFeO3, BFO) has gained a great deal of interest. The prevalence of BFO increases the likelihood of exposures either to environment or to humans. Unfortunately, the understanding of BFO biological effects is very limited. In this study, a battery of standard tests, such as morphology observation, MTT, and LDH assay, and flow cytometry analysis, was employed to elucidate in vitro cytotoxicity of BFO nanoparticles (NPs) in the size range of 30–90 nm using PC12 cells as a model. The results show that BFO-NPs could tightly attach to the cell membrane in the culture medium, which significantly affect the cell adhesion and inhibit their proliferation. Moreover, cytotoxicity of BFO-NPs is greatly mitigated when the exposure time was extended to 48 h. These findings suggest that BFO-NP possess the nature of acute cytotoxicity since the cells can recover to a certain extent over with incubation time. For the first time, our study reveals some essential properties of BFO-NP toxicity, which may advance BFO applications and its toxicological study.


BiFeO3 Biocompatibility Cytotoxicity Environmental and health effects 



This work was supported by the Ministry of Science and Technology of the People’s Republic of China [Grant number: 2011CB965004], and International Science & Technology Cooperation Program of China [Grant number: 2010DFB53890]. The authors would like to thank Dr. Qi Zhang, Dr. Tao Kong, and Dr. Ruigong Su for their kind assistances in the manuscript preparation. Anxin Wang and Xiangxu Jiang were acknowledged for flow cytometry analysis.

Conflicts of interest

The authors report no conflicts of interest.

Supplementary material

11051_2014_2408_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1970 kb)


  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21(24):2463–2485CrossRefGoogle Scholar
  2. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923):63–66CrossRefGoogle Scholar
  3. Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314CrossRefGoogle Scholar
  4. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765CrossRefGoogle Scholar
  5. Gao F, Chen X, Yin K, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu J-M (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19(19):2889CrossRefGoogle Scholar
  6. Ginzburg VV, Balijepailli S (2007) Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 7(12):3716–3722CrossRefGoogle Scholar
  7. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172CrossRefGoogle Scholar
  8. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700CrossRefGoogle Scholar
  9. Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol 241(2):182–194CrossRefGoogle Scholar
  10. Huo Y, Jin Y, Zhang Y (2010) Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity. J Mol Catal A-Chem 331(1–2):15–20CrossRefGoogle Scholar
  11. Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5):1477–1488CrossRefGoogle Scholar
  12. Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer. Part A: mechanisms. Int J Cancer 109:799–809CrossRefGoogle Scholar
  13. Li XY, Shi YC, Miao B, Zhao YL (2012) Effects of embedded carbon nanotube on properties of biomembrane. J Phys Chem B 116(18):5391–5397CrossRefGoogle Scholar
  14. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRefGoogle Scholar
  15. Martin LW, Chu Y-H, Zhan Q, Ramesh R, Han S-J, Wang SX, Warusawithana M, Schlom DG (2007) Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl Phys Lett 91(17):172513CrossRefGoogle Scholar
  16. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  17. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  18. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6(5):3767–3775CrossRefGoogle Scholar
  19. Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S (2008) Interaction of nanoparticles with lipid membrane. Nano Lett 8(3):941–944CrossRefGoogle Scholar
  20. Schulz M, Olubummo A, Binder WH (2012) Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter 8(18):4849–4864CrossRefGoogle Scholar
  21. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595CrossRefGoogle Scholar
  22. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722CrossRefGoogle Scholar
  23. Wang B, Zhang L, Bae SC, Granick S (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA 105(47):18171–18175CrossRefGoogle Scholar
  24. Wang X, Lin Y, Zhang ZC, Bian JY (2011) Photocatalytic activities of multiferroic bismuth ferrite nanoparticles prepared by glycol-based sol-gel process. J Sol-Gel Sci Technol 60(1):1–5CrossRefGoogle Scholar
  25. Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH, Rossell MD, Yu P, Chu YH, Scott JF, Ager JW III, Martin LW, Ramesh R (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5(2):143–147CrossRefGoogle Scholar
  26. Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang CH, Kumar A, Wang CH, Melville A, Adamo C, Sheng G, Chu YH, Ihlefeld JF, Erni R, Ederer C, Gopalan V, Chen LQ, Schlom DG, Spaldin NA, Martin LW, Ramesh R (2009) A Strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Qin Song
    • 1
  • Yongping Liu
    • 1
    • 2
  • Ziyun Jiang
    • 1
  • Mingliang Tang
    • 1
  • Ning Li
    • 1
  • Fenfen Wei
    • 1
  • Guosheng Cheng
    • 1
  1. 1.Key Laboratory for Nano-Bio Interface Research, Chinese Academy of Sciences & Division of NanobiomedicineSuzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesJiangsuP. R. China
  2. 2.Science and Information CollegeQingdao Agricultural UniversityQingdaoP. R. China

Personalised recommendations