Advertisement

Silica nanoparticles carrying boron-containing polymer brushes

  • Eric M. Brozek
  • Alexis H. Mollard
  • Ilya Zharov
Research Paper

Abstract

A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

Keywords

Silica Nanoparticles Carboranes Polymer brushes Non-toxic particles in biological systems 

Notes

Acknowledgments

This work was supported by the University of Utah Research Foundation through a Seed Grant and by the National Science Foundation (DMR-1008251). We are grateful to James K. Harper (University of Utah) for recording solid state NMR spectra.

References

  1. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV (1994) Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjugate Chem 5:58–66CrossRefGoogle Scholar
  2. Bregadze VI, Sivaev IB, Glazun SA (2006) Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents. Anti-Cancer Agents in Med Chem 6:75–109CrossRefGoogle Scholar
  3. Ceberg CP, Brun A, Kahl SB, Koo MS, Persson BR, Salford LG (1995) A comparative study on the pharmacokinetics and biodistribution of boronated porphyrin (BOPP) and sulfhydryl boron hydride (BSH) in the RG2 rat glioma model. J Neurosurg 83:86–92CrossRefGoogle Scholar
  4. Diaz A, Stelzer K, Laramore G, Wiersema R (2002) In: Sauerwein W, Moss R, Witting A (eds) Research and development in neutron capture therapy. Bologna, Monduzzi Editore, pp 993–994Google Scholar
  5. Feakes DA, Shelly K, Hawthorne MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci USA 92:1367–1370CrossRefGoogle Scholar
  6. Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, New YorkCrossRefGoogle Scholar
  7. Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry. Wiley, New YorkGoogle Scholar
  8. Galie KM, Mollard A, Zharov I (2006) Polyester-based carborane-containing dendrons. Inorg Chem 45:7815–7820CrossRefGoogle Scholar
  9. Gedda L, Olsson P, Ponten J, Carlsson J (1996) Development and in vitro studies of epidermal growth factor-dextran conjugates for boron neutron capture therapy. Bioconjug Chem 7:584–591CrossRefGoogle Scholar
  10. Gratton SEA, Parrott MC, Adronov A (2005) Preparation of carborane-containing polymers by atom transfer radical polymerization. J Inorg Organomet Polym 15:469–475CrossRefGoogle Scholar
  11. Hao E, Friso E, Miotto G, Jori G, Soncin M, Fabris C, Sabrian-Vazquez M, Vicente MGH (2008) Synthesis and biological investigations of tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC). Org Biolmol Chem 6:3732–3740CrossRefGoogle Scholar
  12. Hatanaka HA (1975) A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments. J Neurol 209:81–94CrossRefGoogle Scholar
  13. Hawthorne MF (1993) The role of chemistry in the development of cancer therapy by the boron-neutron capture reaction. Angew Chem Int Ed 32:950–984CrossRefGoogle Scholar
  14. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Delivery Rev 54:3–12CrossRefGoogle Scholar
  15. Isaac MF, Khal SB (2003) Synthesis of ether- and carbon-linked polycarboranyl porphyrin dimers for cancer therapies. J Organomet Chem 680:232–243CrossRefGoogle Scholar
  16. Jain P, Dai J, Baker GL, Bruening ML (2008) Rapid synthesis of functional polymer brushes by surface-initiated atom transfer radical polymerization of an acidic monomer. Macromolecules 41:8413–8417CrossRefGoogle Scholar
  17. Javid M, Brownell GL, Sweet WH (1952) The possible use of neutron-capturing isotopes such as boron10 in the treatment of neoplasms. II. Computation of the radiation energies and estimates of effects in normal and neoplastic brain. J Clin Invest 31:604–610CrossRefGoogle Scholar
  18. Kabalka GW, Yao ML (2003) Synthesis of a potential boron neutron capture therapy agent: 1-aminocyclobutane-1-carboxylic acid bearing a butylboronic acid side chain. Synthesis 18:2890–2893CrossRefGoogle Scholar
  19. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073CrossRefGoogle Scholar
  20. Koivunoro H, Bleue DLl, Nastasi U, Lou TP, Reijonen J, Leung JN (2004) BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams. Appl Radiat Isot 61:853–859CrossRefGoogle Scholar
  21. Kolonin MG, Pasqualini R, Arap W (2009) Tissue-specific targeting based on markers expressed outside endothelial cells. Adv Genetics 67:61–102CrossRefGoogle Scholar
  22. Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, Brockman JD, Nigg DW, Hawthorne MF (2013) Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1303437110
  23. Lee JD, Ueno M, Miyajima Y, Nakamura H (2007) Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org Lett 9:323–326CrossRefGoogle Scholar
  24. Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20CrossRefGoogle Scholar
  25. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labeled polyamidoamine dendrimers in vivo. J Controlled Release 68:299–302CrossRefGoogle Scholar
  26. Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara M, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207CrossRefGoogle Scholar
  27. Matyjaszewski K, Xia J (2001) Atom transfer tadical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  28. Meo CD, Panza L, Capitani D, Mannia L, Banzato A, Rondina M, Renier D, Rosato A, Crescenzi V (2007) Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules 8:552–559CrossRefGoogle Scholar
  29. Mishima Y, Honda C, Ichihasi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kobayaki T, Kanda K, Yoshino K (1989) Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 334:388–389CrossRefGoogle Scholar
  30. Miyajima Y, Nakamura H, Kuwata Y, Lee JD, Masunaga S, Ono K, Maruyama K (2006) Transferrin-loaded nido-carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjug Chem 17:1314–1320CrossRefGoogle Scholar
  31. Mollard A, Zharov I (2006) Tricarboranyl pentaerythritol-based building block. Inorg Chem 45:10172–10179CrossRefGoogle Scholar
  32. Nakamura H, Miyajima Y, Takei T, Kasaoka S, Maruyama K (2004) Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem Commun 1910-1911Google Scholar
  33. Nigg DW (2003) Computational dosimetry and treatment planning considerations for neutron capture therapy. J Neurooncol 62:75–86Google Scholar
  34. Nunez R, Gonzalex A, Vinas C, Teixidor F, Sillanpaa R, Kivekas R (2005) Approaches to the preparation of carborane-containing carbosilane compounds. Org Lett 7:231–233CrossRefGoogle Scholar
  35. Parrott MC, Marchington EB, Valliant JF, Adronov A (2005) Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. J Am Chem Soc 127:12081–12089CrossRefGoogle Scholar
  36. Qualmann B, Kessels MM, Musiol HJ, Sierralta WD, Jungblut PW, Moroder L (1996) Synthesis of boron-rich lysine dendrimers as protein labels in electron microscopy. Angew Chem Int Ed 35:909–911CrossRefGoogle Scholar
  37. Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P (2005) In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 26:1043–1052CrossRefGoogle Scholar
  38. Rao M, Trivillin VA, Heber EM, Cantarelli ML, Itoiz ME, Nigg DW, Rebagliati RJ, Batistoni D, Schwint AE (2004) BNCT of 3 cases of spontaneous head and neck cancer in feline patients. Appl Radiat Isot 61:947–952CrossRefGoogle Scholar
  39. Shipp DA, Wang JL, Matyjaszewski K (1998) Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization. Macromolecules 31:8005–8008CrossRefGoogle Scholar
  40. Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562CrossRefGoogle Scholar
  41. Sumitani S, Nagasaki Y (2012) Boron neutron capture therapy assisted by boron-conjugated nanoparticles. Polymer J 44:522–530CrossRefGoogle Scholar
  42. Sweet WH, Javid M (1951) The possible use of slow neutrons plus boron-10 in therapy of intracranial tumors. Trans Am Neurol Assoc 76:60–63Google Scholar
  43. Thomas J, Hawthorne MF (2001) Dodeca(carboranyl)-substituted closomers: toward unimolecular nanoparticles as delivery vehicles for BNCT. Chem Commun 1884-1885Google Scholar
  44. Tietze LF, Griesbach U, Bothe U, Nakamura H, Yamamoto Y (2002) Novel carboranes with a DNA binding unit for the treatment of cancer by boron neutron capture therapy. ChemBioChem 3:219–225CrossRefGoogle Scholar
  45. Tolpin EI, Wellum GR, Dophan FC, Kornblith PL, Zamenhof RG (1975) Boron neutron capture therapy of cerebral gliomas. II. Utilization of the blood-brain barrier and tumor-specific antigens for the selective concentration of boron in gliomas. Oncology 32:223–246CrossRefGoogle Scholar
  46. Ueno M, Ban HS, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med Chem 18:3059–3065CrossRefGoogle Scholar
  47. Valliant JF, Guenther KJ, King AS, Morel R, Schaffer P, Sogbein OO, Stephson KA (2002) The medicinal chemistry of carboranes. Coord Chem Rev 232:173–230CrossRefGoogle Scholar
  48. van Blaaderen A, van Geest J, Vrij AJ (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. Colloid Interface Sci 154:481–501CrossRefGoogle Scholar
  49. Woodhouse SL, Rendina LM (2001) Synthesis and DNA-binding properties of dinuclear platinum(II)-amine complexes of 1,7-dicarba-closo-dodecaborane(12). Chem Commun 23:2464–2465Google Scholar
  50. Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, Fenstermaker RA (2004) Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 15:185–194CrossRefGoogle Scholar
  51. Yanagie H, Maruyama K, Takizawa T, Ishida O, Ogura K, Matsumoto T, Sakurai Y, Kobayashi T, Shinohara A, Rant J, Skvarc J, Ilic R, Kuhne G, Chiba M, Furuya Y, Sugiyama H, Hisa T, Ono K, Kobayashi H, Eriguchi M (2006) Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model. Biomed Pharmacother 60:43–50CrossRefGoogle Scholar
  52. Yang W, Wu G, Barth RF, Swindall MR, Bandyopadhyaya AK, Tjarks W, Tordoff K, Moeschberger M, Sferra TJ, Binns PJ, Riley KJ, Ciesielski MJ, Fenstermaker RA, Wikstrand CJ (2008) Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Cancer Res 14:883–891Google Scholar
  53. Yao HJ, Grimes RN, Corsini M, Zanello P (2003) Polynuclear metallacarborane-hydrocarbon assemblies: metallacarborane dendrimers. Organometallics 22:4381–4383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eric M. Brozek
    • 1
  • Alexis H. Mollard
    • 1
  • Ilya Zharov
    • 1
  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations