White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array

  • B. Sun
  • Q. L. Li
  • W. X. Zhao
  • H. W. Li
  • L. J. Wei
  • P. Chen
Research Paper


White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array grown on fluorine-doped tin oxide substrate by hydrothermal process is investigated. The average length of TiO2/α-Fe2O3 nanorods is about 3.5 μm, and the average diameter is about 250 nm. The sizes of the α-Fe2O3 particles are in the range of 30 ~ 70 nm. The current–voltage characteristics of the composite nanorods array show a good rectifying property and bipolar resistive-switching behavior, and the resistive-switching behavior can be regulated by white-light illumination at room temperature. This study is helpful for exploring the multifunctional materials and their applications in nonvolatile multistate memory devices.


TiO2/α-Fe2O3 composite nanorods array White-light-controlled Resistance switching Nanocomposites 



This work was supported by the National Science Foundation of China (Grant No. 51372209).


  1. Adachi M et al (2012) Shape control of highly crystallized titania nanorods based on formation mechanism. J Mater Res 27(2):431–439. doi: 10.1557/jmr.2011.353 CrossRefGoogle Scholar
  2. Bean CP, Livingston JD (1959) The anisotropy of very small cobaltparticles. J Appl Phys 20(2–3):298–302. doi: 10.1051/jphysrad:01959002002-3029800 Google Scholar
  3. Beermann N, Vayssieres L, Linquist ES, Hagfeldt A (2002) Synthesis of Fe2O3 /TiO2 nanorod–nanotube arrays by filling TiO2 nanotubes with Fe. J Electrochem Soc 147(24):56–61. doi: 10.1088/0957-4484/19/31/315601 Google Scholar
  4. Bera A, Peng H, Lourembam J, Shen Y, Sun XW, Wu T (2013) A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv Funct Mater 23:4977–4984. doi: 10.1002/adfm.201300509 CrossRefGoogle Scholar
  5. Beydoun D, Amal R, Low G, McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1(4):439–458. doi: 10.1023/A:1010044830871 CrossRefGoogle Scholar
  6. Burschka J et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316. doi: 10.1038/nature12340 CrossRefGoogle Scholar
  7. Cao CB, Li JL, Wang X, Song XP, Sun ZQ (2011) Current characterization and growth mechanism of anodic titania nanotube arrays. J Mater Res 26:437. doi: 10.1557/jmr.2010.33 CrossRefGoogle Scholar
  8. Chen J, Xu L, Li WY, Gou X (2005) Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17(5):582–586. doi: 10.1002/adma.200401101 CrossRefGoogle Scholar
  9. Chu D, Yuan X, Qin G, Xu M, Zheng P, Lu J, Zha L (2008) Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. J Nanopart Res 10(2):357–363. doi: 10.1007/s11051-007-9241-7 CrossRefGoogle Scholar
  10. Crossland Edward JW et al (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495:215–219. doi: 10.1038/nature11936 CrossRefGoogle Scholar
  11. Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT Jr (2004) Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. J Chem Phys 108:6004–6008. doi: 10.1021/jp031267y CrossRefGoogle Scholar
  12. Faust BC, Hoffmann MR, Bahnemann DW (1989) Photocatalytic oxidation of sulfur-dioxide in aqueous suspensions of alpha-Fe2O3. J Chem Phys 93(17):6371–6381. doi: 10.1021/j100354a021 CrossRefGoogle Scholar
  13. Gratzel M (2003) Applied physics-solar cells to dye for. Nature 421:586–587. doi: 10.1038/421586a CrossRefGoogle Scholar
  14. Hamaguchi M, Aoyama K, Asanuma S, Uesu Y, Katsufuji T (2006) Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films. Appl Phys Lett 88(14):142508. doi: 10.1063/1.2193328 CrossRefGoogle Scholar
  15. Hasan M, Dong R, Choi HJ, Lee DS, Seong DJ, Pyun MB, Hwang H (2008) Uniform resistive switching with a thin reactive metal interface layer in metal-La(0.7)Ca(0.3)MnO(3)-metal heterostructures. Appl Phys Lett 92(20):202102. doi: 10.1063/1.2932148 CrossRefGoogle Scholar
  16. He CL et al (2009) Nonvolatile resistive switching in graphene oxide thin films. Appl Phys Lett 95(23):232101. doi: 10.1063/1.3271177 CrossRefGoogle Scholar
  17. Hodes G (2013) Perovskite-based solar cells. Science 342:317–318. doi: 10.1126/science.1245473 CrossRefGoogle Scholar
  18. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934. doi: 10.1039/b207789b CrossRefGoogle Scholar
  19. Jang HD, Kim S-K, Kim S-J (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3(2–3):141–147. doi: 10.1023/A:1017948330363 CrossRefGoogle Scholar
  20. Jang JS, Kim D, Seong TY (2006) Schottky barrier characteristics of Pt contacts to n-type InGaN. J Appl Phys 99(7):073704. doi: 10.1063/1.2187274 CrossRefGoogle Scholar
  21. Jeong DS, Schroeder H, Waser R (2007) Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem Solid-State Lett 10(8):G51–G53. doi: 10.1149/1.2742989 CrossRefGoogle Scholar
  22. Jo SH, Kim KH, Lu W (2009) Programmable resistance switching in nanoscale two-terminal devices. Nano Lett 9(1):496–500. doi: 10.1021/nl803669s CrossRefGoogle Scholar
  23. Khan SUM, Akikusa J (1999) Efficient photochemical water splitting by a chemically modified n-TiO2. J Chem Phys 103(718):4–9. doi: 10.1126/science.1075035 Google Scholar
  24. Li YB, Sinitskii A, Tour JM (2008) Electronic two-terminal bistable graphitic memories. Nat Mater 7(12):966–971. doi: 10.1038/nmat2331 CrossRefGoogle Scholar
  25. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990. doi: 10.1021/ja8078972 CrossRefGoogle Scholar
  26. Liu H, Gao L (2006) Preparation and properties of nanocrystalline alpha-Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst. J Am Ceram Soc 89(1):370–373. doi: 10.1111/j.1551-2916.2005.00686.x CrossRefGoogle Scholar
  27. Liu SQ, Wu NJ, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76(19):2749–2751. doi: 10.1063/1.126464 CrossRefGoogle Scholar
  28. Liu M, Abid Z, Wang W, He XL, Liu Q, Guan WH (2009) Multilevel resistive switching with ionic and metallic filaments. Appl Phys Lett 94(23):233106. doi: 10.1063/1.3151822 CrossRefGoogle Scholar
  29. Ma LP, Pyo S, Ouyang J, Xu Q, Yang Y (2003) Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl Phys Lett 82(9):1419–1421. doi: 10.1063/1.1556555 CrossRefGoogle Scholar
  30. Meijer GI (2008) Materials science—who wins the nonvolatile memory race? Science 319:1625–1626. doi: 10.1126/science.1153909 CrossRefGoogle Scholar
  31. Mitchinson A (2008) Materials science—solar cells go round the bend. Nature 455:744. doi: 10.1038/455744a CrossRefGoogle Scholar
  32. Park WY, Kim GH, Seok JY, Kim KM, Song SJ, Lee MH, Hwang CS (2010) A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21(195201):4. doi: 10.1088/0957-4484/21/19/195201 Google Scholar
  33. Park J, Lee S, Yong K (2012) Photo-stimulated resistive switching of ZnO nanorods. Nanotechnology 23:385707. doi: 10.1088/0957-4484/23/38/385707 CrossRefGoogle Scholar
  34. Park J, Lee S, Lee J, Yong K (2013) A light incident angle switchable ZnO nanorod memristor: reversible switching behavior between two non-volatile memory devices. Adv Mater 25:6423–6429. doi: 10.1002/adma.201303017 CrossRefGoogle Scholar
  35. Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, Nørskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys Rev Lett 87(26):266104. doi: 10.1103/PhysRevLett.87.266104 CrossRefGoogle Scholar
  36. Schindler C, Staikov G, Waser R (2009) Electrode kinetics of Cu-SiO2-based resistive switching cells: overcoming the voltage-time dilemma of electrochemical metallization memories. Appl Phys Lett 94(7):072109. doi: 10.1063/1.3077310 CrossRefGoogle Scholar
  37. Stewart DR, Chen Y, Willianms RS, Jeppesen JO, Nielsen KA, Stoddart F (2004) Molecule-independent electrical switching in Pt/organic monolayer/Ti devices Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4(1):133–136. doi: 10.1021/nl034795u CrossRefGoogle Scholar
  38. Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso LE (2012) A light-controlled resistive switching memory. Adv Mater 24(18):2496–2500. doi: 10.1002/adma.201200382 CrossRefGoogle Scholar
  39. Wang Y, Zhang L, Deng K, Chen X, Zou Z (2007) Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J Phys Chem C 111:2709–2714. doi: 10.1021/jp066519k CrossRefGoogle Scholar
  40. Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6(2–3):193–207. doi: 10.1023/B:NANO.0000034623.33083.71 CrossRefGoogle Scholar
  41. Won S, Go S, Lee K, Lee J (2008) Resistive switching properties of Pt/TiO2/n+-Si ReRAM for nonvolatile memory application. Electron Mater Lett 4(1):29–33Google Scholar
  42. Wu JS et al (2011) Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. J Mater Res 26:1646. doi: 10.1557/jmr.2011.190 CrossRefGoogle Scholar
  43. Yang M, Ding B, Lee J-K (2014) Surface electrochemical properties of niobium-doped titanium dioxide nanorods and their effect on carrier collection efficiency of dye sensitized solar cells. J Power Sources 245:301–307. doi: 10.1016/j.jpowsour.2013.06.016 CrossRefGoogle Scholar
  44. Zhuge F, Dai W, He CL, Wang AY, Liu YW, Li M, Wu YH, Cui P, Li RW (2010) Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett 96(16):163505. doi: 10.1063/1.3406121 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Sun
    • 1
    • 2
  • Q. L. Li
    • 3
  • W. X. Zhao
    • 1
    • 2
  • H. W. Li
    • 1
  • L. J. Wei
    • 1
  • P. Chen
    • 1
  1. 1.School of Physics Science and TechnologySouthwest UniversityChongqingChina
  2. 2.Institute for Clean Energy & Advanced Materials (ICEAM)Southwest UniversityChongqingChina
  3. 3.The Southwest University HospitalSouthwest UniversityChongqingChina

Personalised recommendations