Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots

  • Shilpa Sanwlani
  • Kamla Rawat
  • Meena Pal
  • Himadri B. Bohidar
  • Anita Kamra Verma
Research Paper


Cellular uptake of quantum dots (QDs) by cells is of utmost importance for establishing QDs as biostable fluorescent markers that facilitate early diagnosis and detection of cancer. The surface states of QDs are critical to enhance the cellular uptake. Biocompatible CDSe QDs were synthesized using mercaptopropionic acid, amino-ethanethiol HCl, cyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetrabutylammonium iodide (TBAI), and sodium dodecyl sulfate were functionalized using ligand-exchange method. Cytocompatibility and cellular uptake of QDs were evaluated in human embryonic kidney cells (HEK-29), and breast cancer cells (MCF-7) as reduced cytotoxicity is desirable for biological applications. Approximately, 60 % cytotoxicity was observed in all surface-coated QDs and QD100 in 72 h in both the cell lines, except TBAI that indicated 30 % cytotoxicity in 72 h, and only 10 % in 24 h. Glutathione, the detoxifying molecule, is detrimental for understanding the oxidative stress of the cell. The QDs showed enhanced Glutathione-S-transferase (GST) activity in the MCF-7 cell line. In HEK, CdSe per se was also able to induce a high level of GST. QDs toxicity may either be related to the induction of reactive oxygen species or the direct release of metal ions. Optimization of QDs in terms of quantification and DNA damage is imperative for realistic biological applications.


Quantum dots Cellular uptake Oxidative stress GST Cytotoxicity Drug delivery Health effects 



SS acknowledges University Grants Commission, Government of India for a research fellowship. KR acknowledges receipt of senior research fellowship from Council of Scientific and Industrial Research, Government of India. M. Pal is thankful to Department of Biotechnology for Senior Research Fellowship.

Conflict of interest

None declared.


  1. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52CrossRefGoogle Scholar
  2. Al-Jamal WT, Al-Jamal KT (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415CrossRefGoogle Scholar
  3. Ballou B, Ernst L, Andreko S (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjugate Chem 18(2):389–396CrossRefGoogle Scholar
  4. Beyersmann D, Hechtenberg S (1997) Hechtenberg cadmium gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144(2):247–261CrossRefGoogle Scholar
  5. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  6. Bunge SD, Krueger KM, Boyle TJ, Rodriguez MA, Headly TJ, Colvin VL (2003) Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods and spheres from CdO and Cd(O2CCH3)2. J Mater Chem 13:1705–1709CrossRefGoogle Scholar
  7. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018CrossRefGoogle Scholar
  8. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980CrossRefGoogle Scholar
  9. Choi AO, Brown SE (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86(3):291–302CrossRefGoogle Scholar
  10. Clift MJD, Brandenberger (2011) The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology 286(1–3):58–68CrossRefGoogle Scholar
  11. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystals. J Phys Chem B 101(46):9463–9475CrossRefGoogle Scholar
  12. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18CrossRefGoogle Scholar
  13. Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE (2008) Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14(3):731–741CrossRefGoogle Scholar
  14. Ding SY, Jones M, Tucker MP, Nedeljkovic JM, Wall J, Simon MN, Rumbles G, Himmel ME (2003) Quantum dot molecules assembled with genetically engineered proteins. Nano Lett 3:1581–1585CrossRefGoogle Scholar
  15. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRefGoogle Scholar
  16. Gao XH, Yang LL, Petros JA, Marshall FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72CrossRefGoogle Scholar
  17. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  18. Hardman RA (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  19. Ji X, Zheng J (2005) CdSe-ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799CrossRefGoogle Scholar
  20. Kim JK, Lim SH (2004) Conjugation of DNA to streptavidin-coated quantum dots for the real time imaging of gene transfer into live cells. Proc NSTI Nanotechnol Conf Trade Show 3:379–382Google Scholar
  21. Kim JH, Morikis D, Ozkan M (2004a) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuator B Chem 102:315–319CrossRefGoogle Scholar
  22. Kim S, Lim YT, Soltesz EG (2004b) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97CrossRefGoogle Scholar
  23. Kippeny T, Swafford LA, Rosenthal SJ (2002) Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J Chem Educ 79:1094–1100CrossRefGoogle Scholar
  24. Ko WYL, Bagaria HG, Asokan S, Lina KJ, Wong MS (2010) CdSe tetrapod synthesis using cetyltrimethylammonium bromide and heat transfer fluids. J Mater Chem 20:2474–2478CrossRefGoogle Scholar
  25. Konkar A, Lu SY, Madhukar A, Hughes SM, Alivisatos AP (2005) Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy. Nano Lett 5(5):969–973CrossRefGoogle Scholar
  26. Kumar P, Meena R, Paulraj R, Chanchal A, Verma AK, Bohidar HB (2012) Fluorescence behavior of non-functionalized carbon nanoparticles and their in vitro applications in imaging and cytotoxic analysis of cancer cells. Colloids Surf B 91:34–40CrossRefGoogle Scholar
  27. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125(41):12567–12575CrossRefGoogle Scholar
  28. Lidke DS, Nagy P, Heintzmann R (2004) Quantum dot ligands provide new insights into erbB/HER receptor: mediated signal transduction. Nat Biotechnol 22(2):198–203CrossRefGoogle Scholar
  29. Mancini MC, Kairdolf BA (2008) Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J Am Chem Soc 130(33):10836–10837CrossRefGoogle Scholar
  30. Michalet X, Pinaud FF, Bentolila LA (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  31. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefGoogle Scholar
  32. Parak WJ, Boudreau R (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882CrossRefGoogle Scholar
  33. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRefGoogle Scholar
  34. Parungo CP, Ohnishi S, Kim SW (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129(4):844–850CrossRefGoogle Scholar
  35. Peng X (2002) Green chemical approaches toward high-quality semiconductor nanocrystals. Chem Eur J 8:335–339CrossRefGoogle Scholar
  36. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184CrossRefGoogle Scholar
  37. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124(13):3343–3353CrossRefGoogle Scholar
  38. Qi LF, Gao XH (2008) Quantum dot: amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7):1403–1410CrossRefGoogle Scholar
  39. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055CrossRefGoogle Scholar
  40. Qu L, Peng A, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337CrossRefGoogle Scholar
  41. Rikans LE, Yamano T (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14:110–117CrossRefGoogle Scholar
  42. Robe A, Pic E, Lassalle HP, Bezdetnaya L, Guillemin F, Marchal F (2008) Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8(1):111–119CrossRefGoogle Scholar
  43. Selvan ST (2010) Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (mini-review). Biointerphases 5(3):FA110–FA115CrossRefGoogle Scholar
  44. Shen H, Yuan H, Niu JZ (2011) Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1–XS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen. Nanotechnology 22:Article ID 375602Google Scholar
  45. Smith AM, Dave S, Nie SM, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244CrossRefGoogle Scholar
  46. Smith AM, Duan HW, Mohs AM, Nie SM (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240CrossRefGoogle Scholar
  47. Soltesz EG, Kim S, Laurence RG (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79(1):2769–2779CrossRefGoogle Scholar
  48. Soltesz EG, Kim S, Kim SW (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13(3):386–396CrossRefGoogle Scholar
  49. Takeda M, Tada H, Higuchi H (2008) In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 15(2):145–152CrossRefGoogle Scholar
  50. Verma AK, Sachin K, Saxena A, Bohidar HB (2005) Release kinetics from bio-polymeric nanoparticles encapsulating proteins synthesis inhibitor-cycloheximide for possible therapeutic applications. Curr Pharm Biotechnol 6:121CrossRefGoogle Scholar
  51. Wuister SF, de Mello C (2004) J Phys Chem B 108:17393–17397CrossRefGoogle Scholar
  52. Wuister SF, Swart I, Driel FV, Hickey SG, Donega CM (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3(4):503–507CrossRefGoogle Scholar
  53. Xing Y, Chaudry Q, Shen C (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2(5):1152–1165CrossRefGoogle Scholar
  54. Yezhelyev MV, Al-Hajj A, Morris C (2007) In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 19(20):3146–3151CrossRefGoogle Scholar
  55. Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371CrossRefGoogle Scholar
  56. Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Shilpa Sanwlani
    • 1
  • Kamla Rawat
    • 2
  • Meena Pal
    • 3
  • Himadri B. Bohidar
    • 1
    • 2
  • Anita Kamra Verma
    • 3
  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Special Centre for NanosciencesJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Nano-Bio-tech Lab, Department of ZoologyK. M. College, University of DelhiDelhiIndia

Personalised recommendations