Fabrication and characterization of antibacterial nanoparticles supported on hierarchical hybrid substrates

  • Anil K. Karumuri
  • Adam A. Maleszewski
  • Dhawal P. Oswal
  • Heather A. Hostetler
  • Sharmila M. Mukhopadhyay
Research Paper


The effectiveness of many nanomaterial-based devices depends upon their available surface area. Isolated nanoparticles (NPs) can offer high-surface area, but are prone to environmental loss and pollution. Whereas those supported on solid substrates are limited by the specific surface area (SSA) of the support. The SSA limitation of traditional supports can be addressed by attaching NPs on specially designed hierarchical structures having unusually high SSA, thereby maximizing the nanomaterial advantage without the risks of using loose nano-powders. In this research, hierarchical structures were fabricated by grafting carbon nanotubes (CNT) on carbon and subsequently decorated with strongly attached silver nanoparticles (AgNP) via controlled reduction of silver salts in the presence of reducing and capping agents. Microstructure characterization revealed that along with other processing parameters, reduction temperature can be used to control NP morphology. For this substrate morphology, fine and uniformly dispersed AgNP were obtained at 60 °C, whereas significant particle coalescence and increase in particle size occurred at 80 °C. Mechanical durability of AgNP–CNT attachments on the substrate was tested in harsh ultrasonic conditions and found to be impressive, with no detectable AgNP loss even when the larger substrate begins to fail. The antibacterial effectiveness of these structures was tested in multiple testing modes against Gram-negative Escherichia coli (E. coli, JM109). It was seen in each case that AgNP attached on CNT-grafted hierarchical substrates showed significantly higher reduction of E. coli compared to AgNP attached directly on the starting porous supports without CNT grafting. These results indicate that AgNP attached to hierarchal hybrid supports can lead to compact and powerful antibacterial devices for chemical-free disinfection devices of the future.


Hierarchical structures Carbon nanotubes Silver nanoparticles Antibacterial properties Health effects 



Financial support from the Ohio Third Frontier Program, the Environmental Protection Agency, and the Wright state University Ph.D. fellowship is acknowledged. Facilities used were funded by NSF-MRI award and Ohio Board of Regents. The authors are grateful to Ultramet Inc. for generous supply of reticulated vitreous carbon foams.


  1. Alexandraki I, Palacio C (2010) Gram-negative versus Gram-positive bacteremia: what is more alarmin(g)? Crit Care 14:161. doi: 10.1186/cc9013 CrossRefGoogle Scholar
  2. Arroyo-Ramírez L, Montano-Serrano R, Raptis RG, Cabrera CR (2009) Nanostructural formation of Pd–Co bimetallic complex on HOPG surfaces: XPS and AFM studies. J Nanotechnol 2009:1–5. doi: 10.1155/2009/971423 Google Scholar
  3. Asharani PV, Lian WuY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102. doi: 10.1088/0957-4484/19/25/255102 CrossRefGoogle Scholar
  4. Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem 4:2–7. doi: 10.1186/2228-5547-4-29 CrossRefGoogle Scholar
  5. Barney IT, Lennaerts DSR, Higgins SR, Mukhopadhyay SM (2012a) Specific surface area of hierarchical graphitic substrates suitable for multi-functional applications. Mater Lett 88:160–163. doi: 10.1016/j.matlet.2012.08.042 CrossRefGoogle Scholar
  6. Barney IT, Ganguli S, Roy AK, Mukhopadhyay SM (2012b) Improved thermal response in encapsulated phase change materials by nanotube attachment on encapsulating solid. J Nanotechnol Eng Med 3(3):031005CrossRefGoogle Scholar
  7. Brito-Silva AM, Gómez LA, de Araújo CB, Galembeck A (2010) Laser ablated silver nanoparticles with nearly the same size in different carrier media. J Nanomater 2010:1–7. doi: 10.1155/2010/142897 CrossRefGoogle Scholar
  8. Bukhtiyarov V, Hävecker M, Kaichev V et al (2003) Atomic oxygen species on silver: photoelectron spectroscopy and X-ray absorption studies. Phys Rev B 67:235422. doi: 10.1103/PhysRevB.67.235422 CrossRefGoogle Scholar
  9. Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP. Eur Phys J B 17:11–17. doi: 10.1007/s100510070243 CrossRefGoogle Scholar
  10. Chen P, Song L, Liu Y, Fang Y (2007) Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat Phys Chem 76:1165–1168. doi: 10.1016/j.radphyschem.2006.11.012 CrossRefGoogle Scholar
  11. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998. doi: 10.1021/es103302t CrossRefGoogle Scholar
  12. Davies R (1997) The development and functions of silver in water purification and disease control. Catal Today 36:107–114. doi: 10.1016/S0920-5861(96)00203-9 CrossRefGoogle Scholar
  13. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560. doi: 10.1021/am9002155 CrossRefGoogle Scholar
  14. Fayaz AM, Balaji K, Girilal M et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6:103–109. doi: 10.1016/j.nano.2009.04.006 CrossRefGoogle Scholar
  15. Feng QL, Wu J, Chen GQ, et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668Google Scholar
  16. Gururaj M, Neelgund AO (2011) Deposition of silver nanoparticles on dendrimer functionalized multiwalled carbon nanotubes: synthesis, characterization and antimicrobial activity. J Nanosci Nanotechnol 11:3621–3629CrossRefGoogle Scholar
  17. Guzmán MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2:104–111Google Scholar
  18. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi: 10.1002/bit.20368 CrossRefGoogle Scholar
  19. Jiang SQ, Newton E, Yuen CWM, Kan CW (2005) Chemical silver plating and its application to textile fabric design. J Appl Polym Sci 96:919–926. doi: 10.1002/app.21541 CrossRefGoogle Scholar
  20. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413. doi: 10.1021/1a800951v Google Scholar
  21. Karumuri AK, Oswal DP, Hostetler HA, Mukhopadhyay SM (2013) Silver nanoparticles attached to porous carbon substrates: robust materials for chemical-free water disinfection. Mater Lett 109:83–87. doi: 10.1016/j.matlet.2013.07.021 CrossRefGoogle Scholar
  22. Kokura S, Handa O, Takagi T et al (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6:570–574. doi: 10.1016/j.nano.2009.12.002 CrossRefGoogle Scholar
  23. Lee HY, Park HK, Lee YM, et al (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun (28):2959–2961. doi:  10.1039/b703034g
  24. Lee C, Kim JY, Lee WI, et al (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933 Google Scholar
  25. Lee H, Ryu D, Choi S, Lee D (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39:77–85Google Scholar
  26. Liu S, Ng AK, Xu R, et al (2010) Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2:2744–2750. doi: 10.1039/c0nr004411c Google Scholar
  27. Lv Y, Liu H, Wang Z et al (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Memb Sci 331:50–56. doi: 10.1016/j.memsci.2009.01.007 CrossRefGoogle Scholar
  28. Ma J, Zhang J, Xiong Z et al (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21:3350. doi: 10.1039/c0jm02806a CrossRefGoogle Scholar
  29. Manoiu V (2010) Obtaining silver nanoparticles by sonochemical methods. U.P.B. Sci Bull Ser B 72:179–186Google Scholar
  30. Maurer E, Hussain S, Mukhopadhyay SM (2011) Cell growth in a porous microcellular structure: influence of surface modification and nanostructures. Nanosci Nanotechnol Lett 3:110–113. doi: 10.1166/nnl.2011.1128 CrossRefGoogle Scholar
  31. Maurer EI, Comfort KK, Hussain SM et al (2012) Novel platform development using an assembly of carbon nanotube, nanogold and immobilized RNA capture element towards rapid, selective sensing of bacteria. Sensors (Basel) 12:8135–8144. doi: 10.3390/s120608135 CrossRefGoogle Scholar
  32. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MNB (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9:244–271. doi: 10.3390/ijerph9010244 CrossRefGoogle Scholar
  33. Mukhopadhyay SM (2012) Nanoscale mutifunctional materials. Wiley, HobokenGoogle Scholar
  34. Mukhopadhyay SM, Karumuri AK (2010) Nanotube attachment for prevention of interfacial delamination. J Phys D Appl Phys 43:365301. doi: 10.1088/0022-3727/43/36/365301 CrossRefGoogle Scholar
  35. Mukhopadhyay SM, Karumuri A, Barney IT (2009) Hierarchical nanostructures by nanotube grafting on porous cellular surfaces. J Phys D Appl Phys 42:195503. doi: 10.1088/0022-3727/42/19/195503 CrossRefGoogle Scholar
  36. Navaladian S, Viswanathan B, Viswanath R, Varadarajan T (2006) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2:44–48. doi: 10.1007/s11671-006-9028-2 CrossRefGoogle Scholar
  37. Phenomena R, Petrochemicals I, Limited C (1991) XPS CORE LIWEL SPECTRA SOME SILVER COMPOUNDS*. J Electron Spectros Relat Phenomena 56:273–277Google Scholar
  38. Prodana M, Ionita D, Ungureanu C et al (2011) Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles. Microscopy 6:549–556Google Scholar
  39. Pyatenko A, Shimokawa K, Yamaguchi M et al (2004) Synthesis of silver nanoparticles by laser ablation in pure water. Appl Phys A 79:803–806. doi: 10.1007/s00339-004-2841-5 CrossRefGoogle Scholar
  40. Rathnayake WGIU, Ismail H, Baharin A et al (2012) Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polym Test 31:586–592. doi: 10.1016/j.polymertesting.2012.01.010 CrossRefGoogle Scholar
  41. Rodriguez-Gattorno G, Diaz D (2002) Metallic nanoparticles from spontaneous reduction of silver (I) in DMSO. Interaction between nitric oxide and silver nanoparticles. J Phys Chem B 106:2482–2487CrossRefGoogle Scholar
  42. Vijwani H, Mukhopadhyay SM (2012) Palladium nanoparticles on hierarchical carbon surfaces: a new architecture for robust nano-catalysts. Appl Surf Sci 263:712–721CrossRefGoogle Scholar
  43. Vijwani H, Agrawal A, Mukhopadhyay SM (2012) Dechlorination of environmental contaminants using a hybrid nanocatalyst: palladium nanoparticles supported on hierarchical carbon nanostructures. J Nanotechnol 2012:1–9. doi: 10.1155/2012/478381 CrossRefGoogle Scholar
  44. Wei W, Mao X, Ortiz LA, Sadoway DR (2011) Oriented silver oxide nanostructures synthesized through a template-free electrochemical route. J Mater Chem 21:432. doi: 10.1039/c0jm02214d CrossRefGoogle Scholar
  45. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138. doi: 10.1080/17435390902725914 CrossRefGoogle Scholar
  46. Yin H, Yamamoto T, Wada Y, Yanagida S (2004) Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys 83:66–70. doi: 10.1016/j.matchemphys.2003.09.006 CrossRefGoogle Scholar
  47. Zhu HW, Xu CL, Wu DH et al (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886. doi: 10.1126/science.1066996 CrossRefGoogle Scholar
  48. Zhu L, Lu G, Mao S et al (2007) Ripening of silver nanoparticles on carbon nanotubes. NANO 02:149–156. doi: 10.1142/S1793292007000507 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anil K. Karumuri
    • 1
  • Adam A. Maleszewski
    • 1
  • Dhawal P. Oswal
    • 2
  • Heather A. Hostetler
    • 2
  • Sharmila M. Mukhopadhyay
    • 1
  1. 1.Department of Mechanical and Materials Science Engineering, Center for Nanoscale Multifunctional MaterialsWright State UniversityDaytonUSA
  2. 2.Department of Biochemistry and Molecular BiologyWright State UniversityDaytonUSA

Personalised recommendations