Advertisement

Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia

  • Özer Çelik
  • Musa Mutlu Can
  • Tezer Firat
Research Paper

Abstract

We investigated the size dependent magnetic properties and heating mechanism of spinel CoFe2O4 nanoparticles, which synthesized using the nonhydrolytic thermal decomposition method. The size of CoFe2O4 nanoparticles was arranged with the variation of solvent type, reflux time, and reflux temperature. The optimum size range was determined for magnetic fluid hyperthermia. The particles with 9.9 ± 0.3 nm average diameter have the highest heating ability in the AC magnetic field having 3.2 kA/m amplitude and 571 kHz frequency. The maximum specific absorption rate of 22 W/g was obtained for 9.9 ± 0.3 nm sized CoFe2O4 nanoparticles. The calculations and experimental results showed the dominancy of Brownian relaxation at the heat production of synthesized 9.9 ± 0.3 nm nanoparticles. In contrary, the magneto-heating in 5.4 ± 0.2 nm particles mainly originated from Neel relaxation.

Keywords

Magnetic nanoparticles Hyperthermia Magnetic nanofluid hyperthermia CoFe2O4 Nanomedicine 

Notes

Acknowledgments

This work was partially supported by The Scientific and Technological Research Council of Turkey (project number TBAG-109T746).

References

  1. Coskun M, Can MM, Coskun OD, Korkmaz M, Firat T (2012) Surface anisotropy change of CoFe2O4 nanoparticles depending on thickness of coated SiO2 shell. J Nanopart Res 14:1197CrossRefGoogle Scholar
  2. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 9(129):2628–2635CrossRefGoogle Scholar
  3. Häfeli U, Schütt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carries. Plenum, New YorkCrossRefGoogle Scholar
  4. Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–192CrossRefGoogle Scholar
  5. Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRefGoogle Scholar
  6. Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys 18:S2919–S2934Google Scholar
  7. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–647CrossRefGoogle Scholar
  8. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244CrossRefGoogle Scholar
  9. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284CrossRefGoogle Scholar
  10. Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D (2007) Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B 1(81):12–22CrossRefGoogle Scholar
  11. Rosenzweig RE (1985) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  12. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRefGoogle Scholar
  13. Shukla N, Liu C, Roy AG (2006) Oriented self-assembly of cubic FePt nanoparticles. Mater Lett 8(60):995–998CrossRefGoogle Scholar
  14. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M=Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefGoogle Scholar
  15. Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340CrossRefGoogle Scholar
  16. Xu C, Sun S (2007) Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 56:821–826CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Nanotechnology and NanomedicineHacettepe UniversityAnkaraTurkey
  2. 2.CNR-SPINUniversitá di Napoli “Federico II”, Compl. Univ. di Monte S. AngeloNapoliItaly
  3. 3.Faculty of Engineering and Natural SciencesNanotechnology Research and Application Center, Sabanci UniversityİstanbulTurkey
  4. 4.Department of Physics EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations