Skip to main content

Advertisement

Log in

Targeted polymeric nanoparticles containing gold nanorods: a therapeutic approach against glioblastoma

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Chlorotoxin-targeted polymeric nanoparticles containing entrapped gold nanorods as potential therapeutic agent for glioblastoma multiforme have been developed and evaluated. In first proof of concept experiments, in vitro specific uptake in cancer cells and selective laser-induced cell death have been shown. In vivo studies with optical imaging showed increased retention of targeted NPs in the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  Google Scholar 

  • Bonini BF, Camaggi CM, Comes Franchini M, Gentili D, Pession A, Rani M, Strocchi E (2010) Design and synthesis of novel 3,4-disubstituted pyrazoles for nanomedicine applications against malignant gliomas. Eur J Med Chem 45:2024–2033

    Article  Google Scholar 

  • Bost W, Lemor R, Fournelle M (2012) Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents. Appl Opt 51:8041–8046

    Article  Google Scholar 

  • Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7:1318–1322

    Article  Google Scholar 

  • Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817

    Article  Google Scholar 

  • Comes Franchini M, Ponti J, Lemor R, Fournelle M, Broggi F, Locatelli E (2010) Polymeric entrapped thiol-coated gold nanorods: cytotoxicity and suitability as molecular optoacoustic contrast agent. J Mater Chem 20:10908–10912

    Article  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  Google Scholar 

  • Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology 217:633–646

    Article  Google Scholar 

  • Gentili D, Ori G, Comes Franchini M (2009) Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. Chem Comm 45:5874–5876

    Article  Google Scholar 

  • Goldberg SN (2001) Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound 13:129–147

    Article  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554

    Article  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  • Huang Y, He S, Cao W, Cai K, Liang XJ (2012) Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 4:6135–6149

    Article  Google Scholar 

  • Huber P, Debus J, Jenne J, Jochle K, van Kaick G, Lorenz WJ, Wannenmacher M (1996) Therapeutic ultrasound in tumor therapy. Principles, applications and new developments. Radiologe 36:64–71

    Article  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  Google Scholar 

  • Kremkau FW (1979) Cancer therapy with ultrasound: a historical review. J Clin Ultrasound 7:287–300

    Article  Google Scholar 

  • Levy-Nissenbaum E, Khan W, Pawar RP, Tabakman R, Naftali E, Winkler I, Kaufman O, Klapper L, Domba AJ (2012) Pharmacokinetic and efficacy study of cisplatin and paclitaxel formulated in a new injectable poly(sebacic-co-ricinoleic acid) polymer. Eur J Pharm Biopharm 82:85–93

    Article  Google Scholar 

  • Locatelli E, Comes Franchini M (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14:1316–1333

    Article  Google Scholar 

  • Locatelli E, Broggi F, Ponti J, Marmorato P, Lena S, Comes Franchini M (2012) Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv Healthcare Mater 1:342–347

    Article  Google Scholar 

  • Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  Google Scholar 

  • Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ (2004) Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 95:613–626

    Article  Google Scholar 

  • Sato M, Watanabe Y, Ueda S, Iseki S, Abe Y, Sato N, Kimura S, Okubo K, Onji M (1996) Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 110:1507–1514

    Article  Google Scholar 

  • Seo HW, Kim DY, Kwon DY, Kwon JS, Jin LM, Lee B, Kim JH, Min BH, Kim MS (2013) Injectable intratumoral hydrogel as 5-fluorouracil drug depot. Biomaterials 34:2748–2757

    Article  Google Scholar 

  • Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H (1998) Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 58:4871–4879

    Google Scholar 

  • Veiseh O, Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008

    Article  Google Scholar 

  • Veiseh O, Gunn JW, Kievit FM, Sun C, Fang CH, Lee JS, Zhang M (2009) Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5:256–264

    Article  Google Scholar 

  • Wei J, Cheang T, Tang B, Xia H, Xing Z, Chen Z, Fang Y, Chen W, Xu A, Wang S, Luo J (2013) The inhibition of human bladder cancer growth by calcium carbonate/CaIP6 nanocomposite particles delivering AIB1 siRNA. Biomaterials 34:1246–1254

    Article  Google Scholar 

  • Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  Google Scholar 

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Comes Franchini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, E., Bost, W., Fournelle, M. et al. Targeted polymeric nanoparticles containing gold nanorods: a therapeutic approach against glioblastoma. J Nanopart Res 16, 2304 (2014). https://doi.org/10.1007/s11051-014-2304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2304-7

Keywords

Navigation