Skip to main content
Log in

Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Commercial dispersion of dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10) was obtained from Guerbet Group S.A. (Roissy, France) via a scientific collaborative agreement with the Department de Bioquímica I Biología Molecular of the Universitat Autònoma de Barcelona.

References

  • Anzai Y, Blackwell KE, Hirschowitz SL, Rogers JW, Sato Y, Yuh WT, Runge VM, Morris MR, McLachlan SJ, Lufkin RB (1994) Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology 192:709–715

    Google Scholar 

  • Bomati-Miguel O, Gossuin Y, Morales MP, Gillis P, Muller RN (2007) Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core–shell iron–iron oxide nanoparticles. Magn Reson Imaging 25:1437–1441

    Article  Google Scholar 

  • Cañete M, Soriano J, Villanueva A, Roca AG, Veintemillas S, Serna CJ, Miranda R, Morales MP (2010) The endocytic penetration mechanism of iron oxide magnetic nanoparticles with positively charged cover: a morphological approach. Int J Mol Med 26:533–539

    Article  Google Scholar 

  • Caravan P (2009) Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res 42:851–862

    Article  Google Scholar 

  • Coleman J, Nascimiento R, Solomon SB (2007) Advances in imaging for urologic procedures. Nat Clin Pract Urol 4:498–504

    Article  Google Scholar 

  • Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm Res 62(2):126–143

    Article  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  Google Scholar 

  • Gossuin Y, Gillis P, Hocq A, Vuong Q, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wires Nanomed Nanobiotechnol 1(3):299–310

    Article  Google Scholar 

  • Groman EV, Bouchard JC, Reinhardt CP, Vaccaro DE (2007) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjug Chem 18:1763–1771

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399:3–27

    Article  Google Scholar 

  • Harisinghani MG, Saini S, Weissleder R, Hahn PF, Yantiss RK, Tempany C, Wood BJ, Mueller PR (1999) MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic–pathologic correlation. AJR Am J Roentgenol 172:1347–1351

    Article  Google Scholar 

  • Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86–102

    Article  Google Scholar 

  • Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Mag Reson Imaging 13(5):661–674

    Article  Google Scholar 

  • Kehagias DT, Gouliamos AD, Smyrniotis V, Vlahos LJ (2001) Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 14:595–601

    Article  Google Scholar 

  • Kriege M et al (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351:427–437

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  • Maity D, Kale SN, Kaul-Ghanekar R, Xue JM, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron(III) acetylacetonate in tri(ethyleneglycol). J Magn Magn Mater 321:3093–3098

    Article  Google Scholar 

  • Maity D, Chandrasekharan P, Yang CT, Chuang KH, Shuter B, Xue JM, Ding J, Feng SS (2010) Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Nanomedicine 5(10):1571–1584

    Article  Google Scholar 

  • McDermott S, Guimaraes AR (2012) Magnetic nanoparticles in the imaging of tumor angiogenesis. Appl Sci 2(2):525–534

    Article  Google Scholar 

  • Miguel-Sancho M, Bomati-Miguel O, Colom G, Pablo-Salvador J, Marco MP, Santamaría J (2011) Development of stable, water-dispersable, and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem Mater 23:2795–2802

    Article  Google Scholar 

  • Miguel-Sancho M, Bomatí-Miguel O, Roca AG, Martínez G, Arruebo M, Santamaría J (2012) Synthesis of magnetic nanocrystals by thermal decomposition in glycol media: effect of process variables and mechanistic study. Ind Eng Chem Res 51:8348–8357

    Article  Google Scholar 

  • Mondini S, Cenedese S, Marioni G, Molteni G, Santo N, Bianchi CL, Ponti A (2008) One-step synthesis and functionalization of hydroxyl-decorated magnetite nanoparticles. J Colloid Interface Sci 322:173

    Article  Google Scholar 

  • Monet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911

    Article  Google Scholar 

  • Morales MP, Bomati-Miguel O, Perez de Alejo R, Ruiz-Cabello J, Veintemillas-Verdaguer S, O’Grady K (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266:102–109

    Article  Google Scholar 

  • Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D 42:224001

    Article  Google Scholar 

  • Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113:7033–7039

    Article  Google Scholar 

  • Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaria J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23:155603

    Article  Google Scholar 

  • Rümenapp C, Gleich B, Haase A (2012) Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 29(5):1165–1179

    Article  Google Scholar 

  • Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485

    Article  Google Scholar 

  • Shen T, Weissleder R, Papisov M, Bogdanov A Jr, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29(5):599–604

    Article  Google Scholar 

  • Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78(3):550–557

    Article  Google Scholar 

  • Suzuki H, Tsurita G, Ishihara S, Akahane M, Kitayama J, Nagawa H (2008) Resovist-enhanced MRI for preoperative assessment of colorectal hepatic metastases: a case of multiple bile duct hamartomas associated with colon cancer. Case Rep Gastroenterol 2(3):509–516

    Article  Google Scholar 

  • Theppaleak T, Tumcharern G, Wichai U, Rutnakornpituk M (2009) Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers. Polym Bull 63:79–90

    Article  Google Scholar 

  • Thorek DLJ, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–28

    Article  Google Scholar 

  • Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Décorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408

    Article  Google Scholar 

  • Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdagüer S, Serna CJ, Morales MP, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20:115103 (9 pp)

    Article  Google Scholar 

  • Wan J, Cai W, Meng X, Liu E (2007) Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun 47:5004–5006

    Article  Google Scholar 

  • Wei C, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370

    Article  Google Scholar 

  • Weinreb JC, Abu-Alpha AK (2009) Gadolinium-based contrast agents and nephrogenic systemic fibrosis: why did it happen and what have we learned? J Magn Reson Imaging 30:1236–1239

    Article  Google Scholar 

  • Weissleder R, Hahn PF, Stark DD, Elizondo G, Saini S, Todd LE, Wittenberg J, Ferruci JT (1998) Superparamagnetic iron oxide: enhanced detection of splenic tumors with MR imaging. Radiology 169:399–403

    Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  • Yan GP, Robinson L, Hogg P (2007) Magnetic resonance imaging contrast agents: overview and perspectives. Radiography 13:e5–e19

    Article  Google Scholar 

  • Yang WJ, Lee JH, Hong SC, Lee J, Lee J, Han DW (2013) Nanoparticles with various surface-functional groups against human normal fibroblast and fibrosarcoma cells. Materials 6:4689–4706

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by ARAID Foundation (Regional Government of Aragon), and “Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina” (CIBER-BBN), through the intramural research projects IMAFEN (2008–2009) NANOMAG (2008–2009), PROGLIO (2010–2011), and PROGLIO2 (2012–2013). OBM thanks the financial support from the “Ramón y Cajal Program” of the Spanish Ministry of Economy and Competitiveness (MINECO). AGR would like to thank the funding of Spanish Ministerio de Educación, through Programa Nacional de Movilidad de Recursos Humanos 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Bomati-Miguel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomati-Miguel, O., Miguel-Sancho, N., Abasolo, I. et al. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. J Nanopart Res 16, 2292 (2014). https://doi.org/10.1007/s11051-014-2292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2292-7

Keywords

Navigation