Spectroscopic investigation of colloidal CdS quantum dots–methylene blue hybrid associates

  • Oleg V. Ovchinnikov
  • Michail S. Smirnov
  • Tamara S. Shatskikh
  • Vladimir Yu. Khokhlov
  • Boris I. Shapiro
  • Alexey G. Vitukhnovsky
  • Sergey A. Ambrozevich
Research Paper


Spectral properties of hydrophilic associates of colloidal CdS quantum dots (QDs) with methylene blue molecules (MB) prepared by sol–gel method have been studied. The two basic types of hybrid associates were found using FTIR spectra technique. The first-type associates are characterized by planar location of MB heterocycle on QDs spherical interface. In this case MB dimerization is not observed. Both nitrogen and sulfur heteroatoms and double =N+–(CH3)2 bonds of MB are participants of association which causes to conformation of MB heterocycle and π-conjugation length decrease. In UV–Vis absorption and luminescence spectra blue shift of MB peaks for QD-MB associates in comparison with MB spectra in solutions and gelatin was found. The second type of association mostly involves MB nitrogen heteroatoms and CdS QDs interface atoms. At the same time, peaks of UV–Vis and luminescence spectra are red shifted. In this case, dimerization manifestation of MB in QD-MB associates was found. Using the time correlated single photon counting technique resonance electronic excitation energy transfer from recombination luminescence center of CdS QDs to MB molecules was found. Its efficiency is in the range of 0.36–0.51.


Luminescence spectra Methylene blue Quantum dot Hybrid associates Interaction Colloids 



The work was supported by RFBR (Project No. 11-02-00698-a), by the Ministry of education and science of Russian Federation (project 14.B37.21.0457), the Russian Ministry of jobs within the public institutions of higher education in the field of scientific work on the 2014–2016 years (Project No. 1230), a program of strategic development of the Voronezh State University for young researches (Project PSR-MG/08-13) and partly by RFBR, research project No. 14-00-00001 мoл_a.


  1. Adamcikova L, Pavlikova K, Sevcik P (2000) The decay of methylene blue in alkaline solution. React Kinet Catal Lett 69(1):91–94CrossRefGoogle Scholar
  2. Aoki PHB, Volpati D, Caetano W, Constantino CJL (2010) Study of the interaction between cardiolipin bilayers and methylene blue in polymer-based layer-by-layer and Langmuir films applied as membrane mimetic systems. Vib Spectrosc 54:93–102CrossRefGoogle Scholar
  3. Araujio SC, Kawano Y (2002) Near-infrared spectra of polyamide 6, poly(vinyl chloride) and polychlorotrifluoroethylene. J Appl Polymer Sci 85:199–208Google Scholar
  4. Bergmann K, O’Konski CT (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. J Phys Chem 67:2169–2177CrossRefGoogle Scholar
  5. Braswell E (1968) Evidence for trimerization in aqueous solutions of methylene blue. J Phys Chem 72:2477–2483CrossRefGoogle Scholar
  6. Charron G, Struchinskaya T, Edwards DR, Russell DA, Nann Th (2012) Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. J Phys Chem C 116:9334–9342CrossRefGoogle Scholar
  7. Chen J, Cesario ThC, Rentzepis PM (2012) Effect of pH on methylene blue transient states and kinetics and bacteria photoinactivation. J Phys Chem A 115:2702–2707CrossRefGoogle Scholar
  8. Chepic DI, Efros AlL, Ekimov AI, Ivanov MG, Kharchenko VA, Kudriavtsev LA, Yazeva TV (1990) Auger ionization of semiconductor quantum drops in a glass matrix. J Lumin 47:13–127CrossRefGoogle Scholar
  9. Chou K-L, Meng H, Cen Y, Li L, Chen J-Y (2013) Dopamine–quantum dot conjugate: a new kind of photosensitizers for photodynamic therapy of cancers. J Nanopart Res 15:1348CrossRefGoogle Scholar
  10. Cross AD (1960) An introduction to practical infra-red spectroscopy. Butterworth Scientific Publication, LondonGoogle Scholar
  11. Cullity BD (1978) Element of X-ray diffraction. Addison-Wesley, New YorkGoogle Scholar
  12. Dai X-Q, Lu W-Ch, Yang Z-X, Wei Sh-Y, Zang T (1996) Calculation of electronic structure of zinc-blende CdS. Commun Theor Phys 26:257–262Google Scholar
  13. Efros Al L (1992) Optical properties of semiconductor nanocrystals with degenerate valence band. Supperlattices Microstruct 11(2):167–169CrossRefGoogle Scholar
  14. Ekimov AI, Kudryavtsev IA, Ivanov MG, Efros AlL (1990) Spectra and decay kinetics of radiative recombination in CdS microcrystals. J Lumin 46:83–95CrossRefGoogle Scholar
  15. Er AO, Chen J, Cesario ThC, Rentzepis PM (2012) Inactivation of bacteria in plasma. Photochem Photobiol Sci 11:1700–1704CrossRefGoogle Scholar
  16. Etaiw S, El-din H, El-bendary MM (2012) Degradation of methylene blue by catalytic and photo-catalytic processes catalyzed by the organotin-polymer 3[(Me3Sn)4Fe(CN)6]. Appl Catal B 126:326–333CrossRefGoogle Scholar
  17. Fisher BR, Eisler H-J, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetime. J Phys Chem B 108:143–148CrossRefGoogle Scholar
  18. Forster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437(1–2):55–75CrossRefGoogle Scholar
  19. Frasco MF, Vamvakaki V, Chaniotakis N (2010) Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions. J Nanopart Res 12:1449–1458CrossRefGoogle Scholar
  20. Freedman HH (1961) Intramolecular H-Bonds I. A spectroscopic study of the hydrogen bond between hydroxyl and nitrogen. J Am Chem Soc 83(13):2900–2905CrossRefGoogle Scholar
  21. Gollunick K, Franken T, Schade G, Dorhofer G (1970) Photosensitized oxygenation as a function of the triplet energy of sensitizers. Ann N Y Acad Sci 171:89–107CrossRefGoogle Scholar
  22. Granick S, Michaelis L, Schubert M (1940) Methylene blue and other indicators in general acid. The acidity function Semiquinones of oxazines, thiazines and selenazides. J Phys Chem 62:1802–1810Google Scholar
  23. Grumelli D, Mendez De Leo LP, Bonazzola C, Zamlynny V, Calvo EJ, Salvarezza RC (2010) Methylene blue incorporation into alkanethiol sams on Au(111): effect of hydrocarbon chain ordering. Langmuir 26:8226–8232CrossRefGoogle Scholar
  24. Huang Ch, Wu Ch, Zhao Y (2010) Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET. J Nanopart Res 12:2153–2161CrossRefGoogle Scholar
  25. Issa RM, Khedr AM, Rizk H (2008) 1H NMR, IR and UV/VIS spectroscopic studies of some Schiff bases derived from 2-aminoben-zothiazole and 2-amino-3-hydroxypyridine. J Chin Chem Soc 55:875–884Google Scholar
  26. Jockusch S, Timpe H-J, Schnabel W, Turro NJ (1997) Photoinduced energy and electron transfer between ketone triplets and organic dyes. J Phys Chem A 101:440–445CrossRefGoogle Scholar
  27. Jones M, Lo SS, Scholes GD (2009) Signatures of exciton dynamics and carrier trapping in the time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113:18632–18642CrossRefGoogle Scholar
  28. Junqueira HC, Severino D, Dias LG, Gugliotti M, Baptista MS (2002) Modulation of the methylene blue photochemical properties based on the adsorption at aqueous micelle interfaces. Phys Chem Chem Phys 4:2320–2328CrossRefGoogle Scholar
  29. Kamat PV, Lichtin NN (1981) Electron transfer in the quenching of protonated triplet methylene blue by ground-state molecules of the dye. J Phys Chem 85:814–818CrossRefGoogle Scholar
  30. Katafias A, Lipinska M, Strutynski K (2010) Alkaline hydrogen peroxide as a degradation agent of methylene blue: kinetic and mechanistic studies. Reac Kinet Mech Cat 101:251–266CrossRefGoogle Scholar
  31. Katsaba AV, Ambrozevich SA, Vitukhnovsky AG, Fedyanin VV, Lobanov AN, Krivobok VS, Vasiliev RB, Samatov IG (2013) Surface state effect on photoluminescence of CdS colloidal nanocrystals. J Appl Phys 113:184306-1–184306-6CrossRefGoogle Scholar
  32. Kayanuma Y (1988) Quantum-size effects on interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805CrossRefGoogle Scholar
  33. Lee S-K, Mills A (2003a) Luminescence of leuco-thiazine dyes. J Fluoresc 13:375–377CrossRefGoogle Scholar
  34. Lee S-K, Mills A (2003b) Novel photochemistry of leuco-methylene blue. Chem Commun 18:2366–2367CrossRefGoogle Scholar
  35. Lewis GN, Goldschmid O, Magel T, Begeleisen J (1943) Dimeric and other forms of MB: absorption and fluorescence of the pure monomer. J Am Chem Soc 65:1150–1154CrossRefGoogle Scholar
  36. Li Z, Wang Ch-J, Jiang W-T (2010) Intercalation of methylene blue in a high-charge calcium montmorillonite am an indication of surface charge determination. Adsorpt Sci Technol 28:297–312CrossRefGoogle Scholar
  37. Lindsey CP, Patterson GD (1980) Detailed comparison of the Williams–Watts and Cole–Davidson function. J Chem Phys 73(7):3348–3357CrossRefGoogle Scholar
  38. Marshall PN (1976) The composition of stains produced by the oxidation of methylene blue. Histochem J 8:431–442CrossRefGoogle Scholar
  39. Mauckner G, Thonke K, Baier T, Walter T, Sauer R (1994) Temperature-dependent lifetime distribution of the photoluminescence S-band in porous silicon. J Appl Phys 75(8):4167–4170CrossRefGoogle Scholar
  40. Mazeikiene R, Niaura G, Eicher-Lorka O, Malinauskas A (2008) Raman specrtoelectrochemical study of toluidine blue, adsorbed and electropolymerized at a gild electrode. Vib Spectrosc 47:105–112CrossRefGoogle Scholar
  41. Mills A, Hazafy D, Parkinson J, Tuttle T, Hutchings MG (2011) Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes Pigm 88:149–155CrossRefGoogle Scholar
  42. Mullins JT, Taguchi T, Brown PD, Loginov YY, Durose K (1991) Growth and optical properties of CdS:(Cd, Zn)S strained layer superlattices Jap. J Appl Phys 30(11A):L1853–L1856CrossRefGoogle Scholar
  43. Nakanishi K (1962) Infrared absorption spectroscopy: practical. Holden-Day Inc, San FranciscoGoogle Scholar
  44. Nandakumar P, Vijayan C, Murti YVGS (2002) Optical absorption and photoluminescence studies on CdS quantum dots in Nafion. J Appl Phys 91(3):1509–1514CrossRefGoogle Scholar
  45. Nicolai SH, Rodrigues PRP, Agostinho SML, Rubim JC (2002) Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J Electroanal Chem 527:103–111CrossRefGoogle Scholar
  46. Nyk M, Palewska K, Kepinski L, Wilk KA, Strek W, Samoc M (2010) Fluorescence resonance energy transfer in a non-conjugated system of CdSe quantum dots/zinc-phthalocyanine. J Lumin 130:2487–2490CrossRefGoogle Scholar
  47. Ovchinnikov OV, Chernykh SV, Smirnov MS, Alpatova DV, Vorob’Eva RP, Latyshev AN, Evlev AB, Utekhin AN, Lukin AN (2005) Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals. J App Spectrosc 74:809–816CrossRefGoogle Scholar
  48. Ovchinnikov OV, Smirnov MS, Shapiro BI, Latyshev AN, Shatskikh TS, Bordyuzha EE, Soldatenko SA (2012) Spectral characteristics of CdS quantum dots and their associates with dye molecules dispersed in gelatin. Theor Exp Chem 48(1):48–53CrossRefGoogle Scholar
  49. Ovchinnikov OV, Smirnov MS, Shapiro BI, Shatskikh TS, Latyshev AN, Pham Thi Hai Mien, Khokhlov VYu (2013) Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules. Opt Spectrosc 115(3):340–348CrossRefGoogle Scholar
  50. Pokutny SI (1992) Theory of size quantization of exciton in quasi-zero-dimensional semiconductor structures. Phys Status Solidi B 173:607–613CrossRefGoogle Scholar
  51. Pokutny SI (2005) Exciton states in semiconductor spherical nanostructures. Semiconductors 39:1066–1070CrossRefGoogle Scholar
  52. Quintao D, Coutinho K, Canuto S (2002) Interaction between methylene blue and water and possible role on energy transfer for photodynamics. Intern J Quantum Chem 90:634–640CrossRefGoogle Scholar
  53. Rabinowitch E (1941) Epstein LF polymerization of dyestuffs in solution; thionine and methylene blue. J Am Chem Soc 63:69–78CrossRefGoogle Scholar
  54. Rager T, Geoffroy A, Hilfiker R, Storey JMD (2012) The crystalline state of methylene blue: a zoo of hydrates. J Phys Chem C 14:8074–8082Google Scholar
  55. Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP, Kelly V, Lesnyak V, Eychmuller A (2010) CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett 5:753–760CrossRefGoogle Scholar
  56. Rao CNR (1967) In: Rao CNR (ed) Ultra-violet and visible spectroscopy: chemical applications, 2nd edn. Butterworths, LondonGoogle Scholar
  57. Rayevska OYe, Grodzyuk GYa, Dzhagan VM, Stroyuk OL, Kuchmiy SYa, Plyusnin VF, Grivin VP, Valakh MYa (2010) Synthesis and characterization of white-emitting CdS quantum dots stabilized with polyethylenimine. J Phys Chem C 114(51):22478–22486CrossRefGoogle Scholar
  58. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475CrossRefGoogle Scholar
  59. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737CrossRefGoogle Scholar
  60. Scott A (1949) Orientation of methylene blue molecules adsorbed on solids. J Opt Soc Am 39(1):49–56CrossRefGoogle Scholar
  61. Severino D, Junqueira HC, Gabrielli DS, Gugliotti M, Baptista MS (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem Photobiol 77:459–468CrossRefGoogle Scholar
  62. Shea-Rohwer LE, Martin JE, Kelley DF (2010) Increasing the luminescent quantum yield of CdS nanoparticles having broadband broadband emission. J Electrochem Soc 157(1):J1–J7CrossRefGoogle Scholar
  63. Somani PR, Marimuthu R, Viswanath AK, Radhakrishnan S (2003) Thermal degradation properties of solid polymer electrolyte (poly (vinyl alcohol) + phosphoric acid)/methylene blue composites. Polym Degrad Stab 79:77–83CrossRefGoogle Scholar
  64. Spanhel L, Anderson MA (1990) Synthesis of porous quantum-size CdS membranes: photoluminescence phase shift and demodulation measurements. J Am Chem Soc 112:2278–2284CrossRefGoogle Scholar
  65. Tafulo PAR, Queirós RB, González-Aguilar G (2009) On the “concentration-driven” methylene blue dimerization. Spectrochim Acta Part A 73:295–300CrossRefGoogle Scholar
  66. Tardivo JP, Giglio AD, Oliveir CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RF, Baptist MS (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191CrossRefGoogle Scholar
  67. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, Weiss SJ (2007) Singlet oxygen production by peptide-coated quantum dot-photosensizer conjugates. J Am Chem Soc 129:6865–6871CrossRefGoogle Scholar
  68. Uchihara T, Kato H, Miyagi E (2006) Subpicosecond time resolved photoluminescence of thioglycerol-capped CdS nanoparticles in water. J Photochem Photobiol A 181:86–93CrossRefGoogle Scholar
  69. Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ (1997) A study of photobactericidal activity in the phenothiazinium series. FEMS Immunol Med Microbiol 19(1):75–80CrossRefGoogle Scholar
  70. Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42(11):7253–7255CrossRefGoogle Scholar
  71. Yu H, XiuPing Y (2011) Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA. Sci China Chem 54(8):1254–1259CrossRefGoogle Scholar
  72. Yu Y-M, Kim K-M, Lee S-K, Choe YD, Yu PY (2002) Band gap energy and exciton peak of cubic CdS/GaAs epilayer. J Appl Phys 92(2):1162–1164CrossRefGoogle Scholar
  73. Zhenkevich EI, Sagun EI, Knyukshto VN, Stasheuski AS, Galievsky VA, Stupak AP, Blaudeck Th, Borczyskowski Ch (2011) Quantitative analysis of singlet oxygen (1O2) generation via energy transfer in nanocomposites based on semiconductor quantum dots and porphyrin ligands. Phys Chem C 115:21535–21545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Oleg V. Ovchinnikov
    • 1
  • Michail S. Smirnov
    • 1
  • Tamara S. Shatskikh
    • 1
  • Vladimir Yu. Khokhlov
    • 1
  • Boris I. Shapiro
    • 2
  • Alexey G. Vitukhnovsky
    • 3
  • Sergey A. Ambrozevich
    • 3
  1. 1.Voronezh St. UniversityVoronezhRussia
  2. 2.Lomonosov University of Fine Chemical TechnologiesMoscowRussia
  3. 3.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations