Skip to main content
Log in

Spectroscopic investigation of colloidal CdS quantum dots–methylene blue hybrid associates

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Spectral properties of hydrophilic associates of colloidal CdS quantum dots (QDs) with methylene blue molecules (MB) prepared by sol–gel method have been studied. The two basic types of hybrid associates were found using FTIR spectra technique. The first-type associates are characterized by planar location of MB heterocycle on QDs spherical interface. In this case MB dimerization is not observed. Both nitrogen and sulfur heteroatoms and double =N+–(CH3)2 bonds of MB are participants of association which causes to conformation of MB heterocycle and π-conjugation length decrease. In UV–Vis absorption and luminescence spectra blue shift of MB peaks for QD-MB associates in comparison with MB spectra in solutions and gelatin was found. The second type of association mostly involves MB nitrogen heteroatoms and CdS QDs interface atoms. At the same time, peaks of UV–Vis and luminescence spectra are red shifted. In this case, dimerization manifestation of MB in QD-MB associates was found. Using the time correlated single photon counting technique resonance electronic excitation energy transfer from recombination luminescence center of CdS QDs to MB molecules was found. Its efficiency is in the range of 0.36–0.51.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The measurements were performed in Bruker Optics laboratory (Moscow, Russia).

References

  • Adamcikova L, Pavlikova K, Sevcik P (2000) The decay of methylene blue in alkaline solution. React Kinet Catal Lett 69(1):91–94

    Article  Google Scholar 

  • Aoki PHB, Volpati D, Caetano W, Constantino CJL (2010) Study of the interaction between cardiolipin bilayers and methylene blue in polymer-based layer-by-layer and Langmuir films applied as membrane mimetic systems. Vib Spectrosc 54:93–102

    Article  Google Scholar 

  • Araujio SC, Kawano Y (2002) Near-infrared spectra of polyamide 6, poly(vinyl chloride) and polychlorotrifluoroethylene. J Appl Polymer Sci 85:199–208

    Google Scholar 

  • Bergmann K, O’Konski CT (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. J Phys Chem 67:2169–2177

    Article  Google Scholar 

  • Braswell E (1968) Evidence for trimerization in aqueous solutions of methylene blue. J Phys Chem 72:2477–2483

    Article  Google Scholar 

  • Charron G, Struchinskaya T, Edwards DR, Russell DA, Nann Th (2012) Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. J Phys Chem C 116:9334–9342

    Article  Google Scholar 

  • Chen J, Cesario ThC, Rentzepis PM (2012) Effect of pH on methylene blue transient states and kinetics and bacteria photoinactivation. J Phys Chem A 115:2702–2707

    Article  Google Scholar 

  • Chepic DI, Efros AlL, Ekimov AI, Ivanov MG, Kharchenko VA, Kudriavtsev LA, Yazeva TV (1990) Auger ionization of semiconductor quantum drops in a glass matrix. J Lumin 47:13–127

    Article  Google Scholar 

  • Chou K-L, Meng H, Cen Y, Li L, Chen J-Y (2013) Dopamine–quantum dot conjugate: a new kind of photosensitizers for photodynamic therapy of cancers. J Nanopart Res 15:1348

    Article  Google Scholar 

  • Cross AD (1960) An introduction to practical infra-red spectroscopy. Butterworth Scientific Publication, London

    Google Scholar 

  • Cullity BD (1978) Element of X-ray diffraction. Addison-Wesley, New York

    Google Scholar 

  • Dai X-Q, Lu W-Ch, Yang Z-X, Wei Sh-Y, Zang T (1996) Calculation of electronic structure of zinc-blende CdS. Commun Theor Phys 26:257–262

    Google Scholar 

  • Efros Al L (1992) Optical properties of semiconductor nanocrystals with degenerate valence band. Supperlattices Microstruct 11(2):167–169

    Article  Google Scholar 

  • Ekimov AI, Kudryavtsev IA, Ivanov MG, Efros AlL (1990) Spectra and decay kinetics of radiative recombination in CdS microcrystals. J Lumin 46:83–95

    Article  Google Scholar 

  • Er AO, Chen J, Cesario ThC, Rentzepis PM (2012) Inactivation of bacteria in plasma. Photochem Photobiol Sci 11:1700–1704

    Article  Google Scholar 

  • Etaiw S, El-din H, El-bendary MM (2012) Degradation of methylene blue by catalytic and photo-catalytic processes catalyzed by the organotin-polymer 3[(Me3Sn)4Fe(CN)6]. Appl Catal B 126:326–333

    Article  Google Scholar 

  • Fisher BR, Eisler H-J, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetime. J Phys Chem B 108:143–148

    Article  Google Scholar 

  • Forster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437(1–2):55–75

    Article  Google Scholar 

  • Frasco MF, Vamvakaki V, Chaniotakis N (2010) Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions. J Nanopart Res 12:1449–1458

    Article  Google Scholar 

  • Freedman HH (1961) Intramolecular H-Bonds I. A spectroscopic study of the hydrogen bond between hydroxyl and nitrogen. J Am Chem Soc 83(13):2900–2905

    Article  Google Scholar 

  • Gollunick K, Franken T, Schade G, Dorhofer G (1970) Photosensitized oxygenation as a function of the triplet energy of sensitizers. Ann N Y Acad Sci 171:89–107

    Article  Google Scholar 

  • Granick S, Michaelis L, Schubert M (1940) Methylene blue and other indicators in general acid. The acidity function Semiquinones of oxazines, thiazines and selenazides. J Phys Chem 62:1802–1810

    Google Scholar 

  • Grumelli D, Mendez De Leo LP, Bonazzola C, Zamlynny V, Calvo EJ, Salvarezza RC (2010) Methylene blue incorporation into alkanethiol sams on Au(111): effect of hydrocarbon chain ordering. Langmuir 26:8226–8232

    Article  Google Scholar 

  • Huang Ch, Wu Ch, Zhao Y (2010) Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET. J Nanopart Res 12:2153–2161

    Article  Google Scholar 

  • Issa RM, Khedr AM, Rizk H (2008) 1H NMR, IR and UV/VIS spectroscopic studies of some Schiff bases derived from 2-aminoben-zothiazole and 2-amino-3-hydroxypyridine. J Chin Chem Soc 55:875–884

    Google Scholar 

  • Jockusch S, Timpe H-J, Schnabel W, Turro NJ (1997) Photoinduced energy and electron transfer between ketone triplets and organic dyes. J Phys Chem A 101:440–445

    Article  Google Scholar 

  • Jones M, Lo SS, Scholes GD (2009) Signatures of exciton dynamics and carrier trapping in the time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113:18632–18642

    Article  Google Scholar 

  • Junqueira HC, Severino D, Dias LG, Gugliotti M, Baptista MS (2002) Modulation of the methylene blue photochemical properties based on the adsorption at aqueous micelle interfaces. Phys Chem Chem Phys 4:2320–2328

    Article  Google Scholar 

  • Kamat PV, Lichtin NN (1981) Electron transfer in the quenching of protonated triplet methylene blue by ground-state molecules of the dye. J Phys Chem 85:814–818

    Article  Google Scholar 

  • Katafias A, Lipinska M, Strutynski K (2010) Alkaline hydrogen peroxide as a degradation agent of methylene blue: kinetic and mechanistic studies. Reac Kinet Mech Cat 101:251–266

    Article  Google Scholar 

  • Katsaba AV, Ambrozevich SA, Vitukhnovsky AG, Fedyanin VV, Lobanov AN, Krivobok VS, Vasiliev RB, Samatov IG (2013) Surface state effect on photoluminescence of CdS colloidal nanocrystals. J Appl Phys 113:184306-1–184306-6

    Article  Google Scholar 

  • Kayanuma Y (1988) Quantum-size effects on interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  Google Scholar 

  • Lee S-K, Mills A (2003a) Luminescence of leuco-thiazine dyes. J Fluoresc 13:375–377

    Article  Google Scholar 

  • Lee S-K, Mills A (2003b) Novel photochemistry of leuco-methylene blue. Chem Commun 18:2366–2367

    Article  Google Scholar 

  • Lewis GN, Goldschmid O, Magel T, Begeleisen J (1943) Dimeric and other forms of MB: absorption and fluorescence of the pure monomer. J Am Chem Soc 65:1150–1154

    Article  Google Scholar 

  • Li Z, Wang Ch-J, Jiang W-T (2010) Intercalation of methylene blue in a high-charge calcium montmorillonite am an indication of surface charge determination. Adsorpt Sci Technol 28:297–312

    Article  Google Scholar 

  • Lindsey CP, Patterson GD (1980) Detailed comparison of the Williams–Watts and Cole–Davidson function. J Chem Phys 73(7):3348–3357

    Article  Google Scholar 

  • Marshall PN (1976) The composition of stains produced by the oxidation of methylene blue. Histochem J 8:431–442

    Article  Google Scholar 

  • Mauckner G, Thonke K, Baier T, Walter T, Sauer R (1994) Temperature-dependent lifetime distribution of the photoluminescence S-band in porous silicon. J Appl Phys 75(8):4167–4170

    Article  Google Scholar 

  • Mazeikiene R, Niaura G, Eicher-Lorka O, Malinauskas A (2008) Raman specrtoelectrochemical study of toluidine blue, adsorbed and electropolymerized at a gild electrode. Vib Spectrosc 47:105–112

    Article  Google Scholar 

  • Mills A, Hazafy D, Parkinson J, Tuttle T, Hutchings MG (2011) Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes Pigm 88:149–155

    Article  Google Scholar 

  • Mullins JT, Taguchi T, Brown PD, Loginov YY, Durose K (1991) Growth and optical properties of CdS:(Cd, Zn)S strained layer superlattices Jap. J Appl Phys 30(11A):L1853–L1856

    Article  Google Scholar 

  • Nakanishi K (1962) Infrared absorption spectroscopy: practical. Holden-Day Inc, San Francisco

    Google Scholar 

  • Nandakumar P, Vijayan C, Murti YVGS (2002) Optical absorption and photoluminescence studies on CdS quantum dots in Nafion. J Appl Phys 91(3):1509–1514

    Article  Google Scholar 

  • Nicolai SH, Rodrigues PRP, Agostinho SML, Rubim JC (2002) Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J Electroanal Chem 527:103–111

    Article  Google Scholar 

  • Nyk M, Palewska K, Kepinski L, Wilk KA, Strek W, Samoc M (2010) Fluorescence resonance energy transfer in a non-conjugated system of CdSe quantum dots/zinc-phthalocyanine. J Lumin 130:2487–2490

    Article  Google Scholar 

  • Ovchinnikov OV, Chernykh SV, Smirnov MS, Alpatova DV, Vorob’Eva RP, Latyshev AN, Evlev AB, Utekhin AN, Lukin AN (2005) Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals. J App Spectrosc 74:809–816

    Article  Google Scholar 

  • Ovchinnikov OV, Smirnov MS, Shapiro BI, Latyshev AN, Shatskikh TS, Bordyuzha EE, Soldatenko SA (2012) Spectral characteristics of CdS quantum dots and their associates with dye molecules dispersed in gelatin. Theor Exp Chem 48(1):48–53

    Article  Google Scholar 

  • Ovchinnikov OV, Smirnov MS, Shapiro BI, Shatskikh TS, Latyshev AN, Pham Thi Hai Mien, Khokhlov VYu (2013) Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules. Opt Spectrosc 115(3):340–348

    Article  Google Scholar 

  • Pokutny SI (1992) Theory of size quantization of exciton in quasi-zero-dimensional semiconductor structures. Phys Status Solidi B 173:607–613

    Article  Google Scholar 

  • Pokutny SI (2005) Exciton states in semiconductor spherical nanostructures. Semiconductors 39:1066–1070

    Article  Google Scholar 

  • Quintao D, Coutinho K, Canuto S (2002) Interaction between methylene blue and water and possible role on energy transfer for photodynamics. Intern J Quantum Chem 90:634–640

    Article  Google Scholar 

  • Rabinowitch E (1941) Epstein LF polymerization of dyestuffs in solution; thionine and methylene blue. J Am Chem Soc 63:69–78

    Article  Google Scholar 

  • Rager T, Geoffroy A, Hilfiker R, Storey JMD (2012) The crystalline state of methylene blue: a zoo of hydrates. J Phys Chem C 14:8074–8082

    Google Scholar 

  • Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP, Kelly V, Lesnyak V, Eychmuller A (2010) CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett 5:753–760

    Article  Google Scholar 

  • Rao CNR (1967) In: Rao CNR (ed) Ultra-violet and visible spectroscopy: chemical applications, 2nd edn. Butterworths, London

    Google Scholar 

  • Rayevska OYe, Grodzyuk GYa, Dzhagan VM, Stroyuk OL, Kuchmiy SYa, Plyusnin VF, Grivin VP, Valakh MYa (2010) Synthesis and characterization of white-emitting CdS quantum dots stabilized with polyethylenimine. J Phys Chem C 114(51):22478–22486

    Article  Google Scholar 

  • Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475

    Article  Google Scholar 

  • Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  Google Scholar 

  • Scott A (1949) Orientation of methylene blue molecules adsorbed on solids. J Opt Soc Am 39(1):49–56

    Article  Google Scholar 

  • Severino D, Junqueira HC, Gabrielli DS, Gugliotti M, Baptista MS (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem Photobiol 77:459–468

    Article  Google Scholar 

  • Shea-Rohwer LE, Martin JE, Kelley DF (2010) Increasing the luminescent quantum yield of CdS nanoparticles having broadband broadband emission. J Electrochem Soc 157(1):J1–J7

    Article  Google Scholar 

  • Somani PR, Marimuthu R, Viswanath AK, Radhakrishnan S (2003) Thermal degradation properties of solid polymer electrolyte (poly (vinyl alcohol) + phosphoric acid)/methylene blue composites. Polym Degrad Stab 79:77–83

    Article  Google Scholar 

  • Spanhel L, Anderson MA (1990) Synthesis of porous quantum-size CdS membranes: photoluminescence phase shift and demodulation measurements. J Am Chem Soc 112:2278–2284

    Article  Google Scholar 

  • Tafulo PAR, Queirós RB, González-Aguilar G (2009) On the “concentration-driven” methylene blue dimerization. Spectrochim Acta Part A 73:295–300

    Article  Google Scholar 

  • Tardivo JP, Giglio AD, Oliveir CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RF, Baptist MS (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191

    Article  Google Scholar 

  • Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, Weiss SJ (2007) Singlet oxygen production by peptide-coated quantum dot-photosensizer conjugates. J Am Chem Soc 129:6865–6871

    Article  Google Scholar 

  • Uchihara T, Kato H, Miyagi E (2006) Subpicosecond time resolved photoluminescence of thioglycerol-capped CdS nanoparticles in water. J Photochem Photobiol A 181:86–93

    Article  Google Scholar 

  • Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ (1997) A study of photobactericidal activity in the phenothiazinium series. FEMS Immunol Med Microbiol 19(1):75–80

    Article  Google Scholar 

  • Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42(11):7253–7255

    Article  Google Scholar 

  • Yu H, XiuPing Y (2011) Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA. Sci China Chem 54(8):1254–1259

    Article  Google Scholar 

  • Yu Y-M, Kim K-M, Lee S-K, Choe YD, Yu PY (2002) Band gap energy and exciton peak of cubic CdS/GaAs epilayer. J Appl Phys 92(2):1162–1164

    Article  Google Scholar 

  • Zhenkevich EI, Sagun EI, Knyukshto VN, Stasheuski AS, Galievsky VA, Stupak AP, Blaudeck Th, Borczyskowski Ch (2011) Quantitative analysis of singlet oxygen (1O2) generation via energy transfer in nanocomposites based on semiconductor quantum dots and porphyrin ligands. Phys Chem C 115:21535–21545

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by RFBR (Project No. 11-02-00698-a), by the Ministry of education and science of Russian Federation (project 14.B37.21.0457), the Russian Ministry of jobs within the public institutions of higher education in the field of scientific work on the 2014–2016 years (Project No. 1230), a program of strategic development of the Voronezh State University for young researches (Project PSR-MG/08-13) and partly by RFBR, research project No. 14-00-00001 мoл_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Ovchinnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, O.V., Smirnov, M.S., Shatskikh, T.S. et al. Spectroscopic investigation of colloidal CdS quantum dots–methylene blue hybrid associates. J Nanopart Res 16, 2286 (2014). https://doi.org/10.1007/s11051-014-2286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2286-5

Keywords

Navigation