QSAR model for cytotoxicity of SiO2 nanoparticles on human lung fibroblasts

  • Alla P. Toropova
  • Andrey A. Toropov
  • Emilio Benfenati
  • Rafi Korenstein
Brief Communication


The possibility of building up predictive model for cytotoxicity of SiO2-nanoparticles (SiO2-NPs) by means of so-called optimal descriptors which are mathematical functions of size and concentration of SiO2-NPs is demonstrated with data on sixteen systems’ “size–concentration.” The calculation has been carried out by means of the CORAL software (http://www.insilico.eu/coral/). The statistical quality of the best model for the cytotoxic inhibition ratio (%) of human lung fibroblasts cultured in the media containing different concentrations of SiO2‐NPs which is measured by MTT assay is the following: n = 10, r 2 = 0.9837, s = 2.53 %, F = 483 (training set) and n = 6, r 2 = 0.9269, s = 7.94 % (test set). The perspectives of this approach are discussed.


QSAR SiO2 nanoparticle Optimal descriptor CORAL software Modeling and simulation Health effects 



The authors thank EU FP7 project PreNanoTox (contract 309666) for financial support.


  1. Afantitis A, Melagraki G, Sarimveis H, Igglessi-Markopoulou O, Kollias G (2009) A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44:877–884CrossRefGoogle Scholar
  2. Afantitis A, Melagraki G, Koutentis PA, Sarimveis H, Kollias G (2011) Ligand-based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks. Eur J Med Chem 46:497–508CrossRefGoogle Scholar
  3. Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardini G (2010) Nanotechnology and human health: risks and benefits. J Appl Toxicol 30:730–744CrossRefGoogle Scholar
  4. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic highmagnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  5. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure–activity relationship modeling. ACS Nano 4:5703–5712CrossRefGoogle Scholar
  6. Furtula B, Gutman I (2011) Relation between second and third geometric-arithmetic indices of trees. J Chemometr 25:87–91CrossRefGoogle Scholar
  7. Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–1693CrossRefGoogle Scholar
  8. García J, Duchowicz PR, Rozas MF, Caram JA, Mirífico MV, Fernández FM, Castro EA (2011) A comparative QSAR on 1,2,5-thiadiazolidin-3-one 1,1-dioxide compounds as selective inhibitors of human serine proteinases. J Mol Graph Model 31:10–19CrossRefGoogle Scholar
  9. Garro Martinez JC, Duchowicz PR, Estrada MR, Zamarbide GN, Castro EA (2011) QSAR study, molecular design of open-chain enaminones as anticonvulsant agents. Int J Mol Sci 12:9354–9368CrossRefGoogle Scholar
  10. González MP, Toropov AA, Duchowicz PR, Castro EA (2004) QSPR calculation of normal boiling points of organic molecules based on the use of correlation weighting of atomic orbitals with extended connectivity of zero- and first-order graphs of atomic orbitals. Molecules 9:1019–1033CrossRefGoogle Scholar
  11. Hollas B, Gutman I, Trinajstić N (2005) On reducing correlations between topological indices. Croat Chem Acta 78:489–492Google Scholar
  12. Ibezim E, Duchowicz PR, Ortiz EV, Castro EA (2012) QSAR on aryl-piperazine derivatives with activity on malaria. Chemometr Intell Lab Syst 110:81–88CrossRefGoogle Scholar
  13. Ivanciuc T, Ivanciuc O, Klein DJ (2006) Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR). Mol Divers 10:133–145CrossRefGoogle Scholar
  14. Leszczynski J (2010) Bionanoscience: Nano meets bio at the interface. Nat Nanotech 5:633–634CrossRefGoogle Scholar
  15. Li W, Samra DA, Merzaban J, Khashab NM (2013) P-glycoprotein targeted nanoscale drug carriers. J Nanosci Nanotech 13:1399–1402CrossRefGoogle Scholar
  16. Marinescu G, Patron L, Culita DC, Neagoe C, Lepadatu CI, Balint I, Bessais L, Cizmas CB (2006) Synthesis of magnetite nanoparticles in the presence of aminoacids. J Nanopart Res 8:1045–1051CrossRefGoogle Scholar
  17. Melagraki G, Afantitis A (2011) Ligand and structure based virtual screening strategies for hit-finding and optimization of Hepatitis C virus (HCV) inhibitors. Curr Med Chem 18:2612–2619CrossRefGoogle Scholar
  18. Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, Koutentis PA, Kollias G (2010) In silico exploration for identifying structure-activity relationship of MEK inhibition and oral bioavailability for isothiazole derivatives. Chem Biol Drug Des 76:397–406CrossRefGoogle Scholar
  19. Mullen LMA, Duchowicz PR, Castro EA (2011) QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents. Chemometr Intell Lab Syst 107:269–275CrossRefGoogle Scholar
  20. Nurgaliev IN, Toropov AA, Kudyshkin VO, Ruban IN, Voropaeva NL, Rashidova SSh (2006) QSPR-modeling of oligophenylene melting points. J Struct Chem 47:362–366CrossRefGoogle Scholar
  21. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm 2 metrics for validation of QSPR models. Chemometr Intell Lab Syst 107:194–205CrossRefGoogle Scholar
  22. Olson MA, Braunschweig AB, Ikeda T, Fang L, Trabolsi A, Slawin AMZ, Khan SI, Stoddart JF (2009) Thermodynamic forecasting of mechanically interlocked switches. Organ Biomol Chem 7:4391–4405CrossRefGoogle Scholar
  23. Petrova T, Rasulev BF, Toropov AA, Leszczynska D, Leszczynski J (2011) Improved model for fullerene C 60 solubility in organic solvents based on quantum-chemical and topological descriptors. J Nanopart Res 13:3235–3247CrossRefGoogle Scholar
  24. Puzyn T, Leszczynska D, Leszczynski J (2009) Toward the development of “Nano-QSARs”: advances and challenges. Small 5:2494–2509CrossRefGoogle Scholar
  25. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang H-M, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotech 6:175–178CrossRefGoogle Scholar
  26. Roy K, Toropov AA (2005) QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants. J Mol Model 11:89–96CrossRefGoogle Scholar
  27. Sayes C, Ivanov I (2010) Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 30:1723–1734CrossRefGoogle Scholar
  28. Thomas DG, Gaheen S, Harper SL, Fritts M, Klaessig F, Hahn-Dantona E, Paik D, Pan S, Stafford GA, Freund ET, Klemm JD, Baker NA (2013) ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol 13: art. no. 2Google Scholar
  29. Toropov AA, Benfenati E (2007) SMILES in QSPR/QSAR modeling: results and perspectives. Curr Drug Discov Technol 4:77–116CrossRefGoogle Scholar
  30. Toropov AA, Leszczynski J (2006) A new approach to the characterization of nanomaterials: predicting Young’s modulus by correlation weighting of nanomaterials codes. Chem Phys Lett 433:125–129CrossRefGoogle Scholar
  31. Toropov AA, Voropaeva NL, Ruban IN, Rashidova SSh (1999) Quantitative structure–property relationships for binary polymer-solvent systems: Correlation weighing of the local invariants of molecular graphs. Polymer Sci A 41:975–985Google Scholar
  32. Toropov AA, Kudyshkin VO, Voropaeva NL, Ruban IN, Rashidova SSh (2001) Modeling of activity of monomers in radical copolymerization by optimization of correlation weights of local graph invariants. Polymer Sci B 43:116–119Google Scholar
  33. Toropov AA, Kudyshkin VO, Voropaeva NL, Ruban IN, Rashidova SSh (2004) QSPR modeling of the reactivity parameters of monomers in radical copolymerizations. J Struct Chem 45:945–950CrossRefGoogle Scholar
  34. Toropov AA, Toropova AP, Mukhamedzhanova DV, Gutman I (2005) Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure–property relationships (QSPR). Indian J Chem A 44:1545–1552Google Scholar
  35. Toropov AA, Rasulev BF, Leszczynski J (2007a) QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: comparative analysis by MLRA and optimal descriptors. QSAR Comb Sci 26:686–693CrossRefGoogle Scholar
  36. Toropov AA, Leszczynska D, Leszczynski J (2007b) Predicting thermal conductivity of nanomaterials by correlation weighting technological attributes codes. Mater Lett 61:4777–4780CrossRefGoogle Scholar
  37. Toropov AA, Toropova AP, Raska I Jr (2008a) QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES. Eur J Med Chem 43:714–740CrossRefGoogle Scholar
  38. Toropov AA, Toropova AP, Benfenati E (2008b) QSPR modeling for enthalpies of formation of organometallic compounds by means of SMILES-based optimal descriptors. Chem Phys Lett 461:343–347CrossRefGoogle Scholar
  39. Toropov AA, Rasulev BF, Leszczynski J (2008c) QSAR modeling of acute toxicity by balance of correlations. Bioorg Med Chem 16:5999–6008CrossRefGoogle Scholar
  40. Toropov AA, Toropova AP, Benfenati E, Manganaro A (2009a) QSAR modelling of carcinogenicity by balance of correlations. Mol Divers 13:367–373CrossRefGoogle Scholar
  41. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2009b) Additive InChI-based optimal descriptors: QSPR modeling of fullerene C 60 solubility in organic solvents. J Math Chem 46:1232–1251CrossRefGoogle Scholar
  42. Toropov AA, Toropova AP, Benfenati E (2009c) QSPR modeling of octanol water partition coefficient of platinum complexes by InChI-based optimal descriptors. J Math Chem 46:1060–1073CrossRefGoogle Scholar
  43. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2010a) InChI-based optimal descriptors: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors by correlation balance. Eur J Med Chem 45:1387–1394CrossRefGoogle Scholar
  44. Toropov AA, Toropova AP, Benfenati E (2010b) QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Mol Divers 14:183–192CrossRefGoogle Scholar
  45. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2010c) SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations. J Comput Chem 31:381–392Google Scholar
  46. Toropova AP, Toropov AA, Benfenati E, Gini G (2011a) Co-evolutions of correlations for QSAR of toxicity of organometallic and inorganic substances: an unexpected good prediction based on a model that seems untrustworthy. Chemometr Intell Lab Syst 105:215–219CrossRefGoogle Scholar
  47. Toropova AP, Toropov AA, Benfenati E, Gini G (2011b) QSAR modelling toxicity toward rats of inorganic substances by means of CORAL Cent Eur J Chem 9:75–85Google Scholar
  48. Toropova AP, Toropov AA, Puzyn T, Benfenati E, Leszczynska D, Leszczynski J (2013) Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems. J Math Chem 51:2230–2237CrossRefGoogle Scholar
  49. Xu Z, Chou L, Sun J (2012) Effects of SiO2 nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway. J Appl Toxicol 32:358–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alla P. Toropova
    • 1
  • Andrey A. Toropov
    • 1
  • Emilio Benfenati
    • 1
  • Rafi Korenstein
    • 2
  1. 1.Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
  2. 2.Department of Physiology and Pharmacology, Faculty of MedicineTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations