Advertisement

Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

  • Leonardo Ricotti
  • Ricardo Pires das Neves
  • Gianni Ciofani
  • Claudio Canale
  • Simone Nitti
  • Virgilio Mattoli
  • Barbara Mazzolai
  • Lino Ferreira
  • Arianna Menciassi
Research Paper

Abstract

F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young’s modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

Keywords

F/G-actin ratio Intracellular stimulation Cytoskeleton organization Piezoelectric nanoparticles Cell mechanical properties 

Notes

Acknowledgments

Authors would like to thank Mr. Carlo Filippeschi for his invaluable help during all clean room procedures and Prof. Liberato Manna for his support during the IPC-MS analysis.

References

  1. Albinsson S, Nordström I, Hellstrand P (2004) Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J Biol Chem 279:34849–34855CrossRefGoogle Scholar
  2. Atkinson SJ, Hosford MA, Molitoris BA (2004) Mechanism of actin polymerization in cellular ATP depletion. J Biol Chem 279:5194–5199CrossRefGoogle Scholar
  3. Baatout S, Chatelain B, Staquet P, Symann M, Chatelain C (1999) The G and F contents in megakaryocyte cell lines after stimulation with phorbol myristate acetate. Anticancer Res 19:3259–3264Google Scholar
  4. Butoescu N, Seemayer CA, Foti M, Jordan O, Doelker E (2009) Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials 30:1772–1780CrossRefGoogle Scholar
  5. Carlier MF, Pantaloni D (1997) Control of actin dynamics in cell motility. J Mol Biol 269:459–467CrossRefGoogle Scholar
  6. Chen X, Pavlish K, Benoit JN (2008) Myosin phosphorylation triggers actin polymerization in vascular smooth muscle. Am J Physiol Heart Circ Physiol 295:H2172–H2177CrossRefGoogle Scholar
  7. Ciofani G, Ricotti L, Danti S, Moscato S, Nesti C, D’Alessandro D, Dinucci D, Chiellini F, Pietrabissa A, Petrini M, Menciassi A (2010a) Investigation of interactions between poly-l-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation. Int J Nanomed 5:285–298CrossRefGoogle Scholar
  8. Ciofani G, Danti S, D’Alessandro D, Ricotti L, Moscato S, Bertoni G, Falqui A, Berrettini S, Petrini M, Mattoli V, Menciassi A (2010b) Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4:6267–6277CrossRefGoogle Scholar
  9. Ciofani G, Danti S, Ricotti L, D’Alessandro D, Moscato S, Berrettini S, Mattoli V, Menciassi A (2011) Boron nitride nanotubes: production, properties, biological interactions and potential applications as therapeutic agents in brain diseases. Curr Nanosci 7:94–109CrossRefGoogle Scholar
  10. Ciofani G, Danti S, Ricotti L, D’Alessandro D, Moscato S, Mattoli V (2012) Applications of piezoelectricity in nanomedicine. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications, Chap 8. Springer, BerlinCrossRefGoogle Scholar
  11. Ciofani G, Genchi GG, Liakos I, Athanassiou A, Dinucci D, Chiellini F, Mattoli V (2013) A simple approach to covalent functionalization of boron nitride nanotubes. J Colloid Interface Sci 374:308–314CrossRefGoogle Scholar
  12. Cytoskeleton™ (2012) Cdc42 activation assay biochem kit, Cat #BK034, p 5. http://www.cytoskeleton.com/pdf-storage/datasheets/BK034.pdf. Accessed 2 Feb 2012
  13. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635CrossRefGoogle Scholar
  14. Fediuk J, Gutsol A, Nolette N, Dakshinamurti S (2012) Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Lung Physiol 302:L13–L26CrossRefGoogle Scholar
  15. Gallo G (2013) Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol 301:95–156CrossRefGoogle Scholar
  16. Gunst SJ, Tang DD, Opazo Saez A (2003) Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol 16:151–168CrossRefGoogle Scholar
  17. Hao S, Zhou G, Duan W, Wu J, Gu BL (2006) Tremendous spin-splitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices. J Am Chem Soc 128:8453–8458CrossRefGoogle Scholar
  18. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRefGoogle Scholar
  19. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRefGoogle Scholar
  20. Iborra FJ, Buckle V (2008) Wide confocal cytometry: a new approach to study proteomic and structural changes in the cell nucleus during the cell cycle. Histochem Cell Biol 129:45–53CrossRefGoogle Scholar
  21. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599CrossRefGoogle Scholar
  22. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Ann Rev Cell Dev Biol 21:247–269CrossRefGoogle Scholar
  23. Kake T, Kimura S, Takahashi K, Maruyama K (1995) Calponin induces actin polymerization at low ionic strength and inhibits depolymerization of actin filaments. Biochem J 312:587–592Google Scholar
  24. Koestler SA, Rottner K, Lai F, Block J, Vinzenz M, Small JV (2009) F- and G-actin concentrations in lamellipodia of moving cells. PLoS ONE 4:e4810CrossRefGoogle Scholar
  25. Koukouritaki S, Theodoropoulos PA, Margioris AN, Gravanis A, Stournaras C (1996) Dexamethasone alters rapidly actin polymerization dynamics in human endometrial cells: evidence for nongenomic actions involving cAMP turnover. J Cell Biochem 62:251–261CrossRefGoogle Scholar
  26. Kwon O, Phillips CL, Molitoris BA (2002) Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282:F1012–F1019Google Scholar
  27. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. Freeman and Company, New YorkGoogle Scholar
  28. Ma L, Rohatgi R, Kirschner MW (1998) The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci 95:15362–15367CrossRefGoogle Scholar
  29. Massarwa R, Carmon S, Shilo BZ, Schejter ED (2007) WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell 12:557–569CrossRefGoogle Scholar
  30. Muhlrad A, Cheung P, Phan BG, Miller C, Reisler E (1994) Dynamic properties of actin. J Biol Chem 269:11852–11858Google Scholar
  31. Ng CP, Goodman TT, Park IK, Pun SH (2009) Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility. Biomaterials 30:951–958CrossRefGoogle Scholar
  32. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62CrossRefGoogle Scholar
  33. Papakonstanti EA, Emmanouel DS, Gravanis A, Stournaras C (1996) Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells. Biochem J 315:241–247Google Scholar
  34. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691CrossRefGoogle Scholar
  35. Rao JY, Li N (2004) Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Target 4:345–354CrossRefGoogle Scholar
  36. Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F (2010) Effects of F/G-actin ratio and actin turn-over rate of NADPH oxidase activity in microglia. BMC Immunol 11:44–59CrossRefGoogle Scholar
  37. Renault A, Lenne PF, Zakri C, Aradian A, Vénien-Bryan C, Amblard F (1999) Surface-induced polymerization of actin. Biophys J 76:1580–1590CrossRefGoogle Scholar
  38. Ricotti L, Menciassi A (2012) Bio-hybrid muscle cell-based actuators. Biomed Microdev 14:987–998CrossRefGoogle Scholar
  39. Ricotti L, Menciassi A (2013) Engineering stem cells for future medicine. IEEE Trans Biomed Eng 60:727–734CrossRefGoogle Scholar
  40. Ricotti L, Fujie T, Vazão H, Ciofani G, Marotta R, Brescia R, Filippeschi C, Corradini I, Matteoli M, Mattoli V, Ferreira L, Menciassi A (2013) Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS ONE 8:e71707CrossRefGoogle Scholar
  41. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529CrossRefGoogle Scholar
  42. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609CrossRefGoogle Scholar
  43. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231CrossRefGoogle Scholar
  44. Sarner S, Kozma R, Ahmed S, Lim L (2000) Phosphatidylinositol 3-Kinase, Cdc42, and Rac1 Act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 20:158–172CrossRefGoogle Scholar
  45. Searles CD, Ide L, Davis ME, Cai H, Weber M (2004) Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res 95:488–495CrossRefGoogle Scholar
  46. Senger R, Goldmann WH (1995) The influence of cations and ionic strength on actin polymerization in the presence/absence of alpha-actinin. Biochem Mol Biol Int 35:103–109Google Scholar
  47. Sheterline P, Clayton J, Sparrow JC (1998) Protein profile, actin. Oxford University Press, New YorkGoogle Scholar
  48. Sniadecki NJ (2010) Minireview: a tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology 151:451–457CrossRefGoogle Scholar
  49. Stournaras C, Stiakaki E, Koukouritaki SB, Theodoropoulos PA, Kalmanti M, Fostinis Y, Gravanis A (1996) Altered actin polymerization dynamics in various malignant cell types: evidence for differential sensitivity to cytochalasin B. Biochem Pharmacol 52:1339–1346CrossRefGoogle Scholar
  50. Tang DD, Tan J (2003) Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol 285:H1528–H1536Google Scholar
  51. Wen KK, Rubenstein PA (2009) Differential regulation of actin polymerization and structure by yeast formin isoforms. J Biol Chem 284:16776–16783CrossRefGoogle Scholar
  52. Yang C, Huang M, DeBiasio J, Pring M, Joyce M, Miki H, Takenawa T, Zigmond SH (2000) Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol 150:1001–1012CrossRefGoogle Scholar
  53. Yi JS, Schmidt J, Chien AC, Montemagno CD (2009) Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization. Nanotechnology 20:085101CrossRefGoogle Scholar
  54. Zalavary S, Grenegärd M, Stendahl O, Bengtsson T (1996) Platelets enhance Fcγ receptor-mediated phagocytosis and respiratory burst in neutrophils: the role of purinergic modulation and actin polymerization. J Leukoc Biol 60:58–68Google Scholar
  55. Zhang ZY, Miao C, Guo W (2013) Nano-solenoid: helicoid carbon-boron nitride hetero-nanotube. Nanoscale 5:11902–11909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Leonardo Ricotti
    • 1
  • Ricardo Pires das Neves
    • 4
    • 5
  • Gianni Ciofani
    • 2
  • Claudio Canale
    • 3
  • Simone Nitti
    • 3
  • Virgilio Mattoli
    • 2
  • Barbara Mazzolai
    • 2
  • Lino Ferreira
    • 4
    • 5
  • Arianna Menciassi
    • 1
  1. 1.The BioRobotics InstituteScuola Superiore Sant’AnnaPontederaItaly
  2. 2.Center for Micro-BioRobotics @ SSSAIstituto Italiano di TecnologiaPontederaItaly
  3. 3.Istituto Italiano di TecnologiaGenoaItaly
  4. 4.Biocant - Center of Innovation and BiotechnologyCantanhede, CoimbraPortugal
  5. 5.Center for Neurosciences and Cell BiologyCoimbraPortugal

Personalised recommendations