Advertisement

Unusual magnetic behaviors and electrical properties of Nd-doped BiFeO3 nanoparticles calcined at different temperatures

  • H. Zhang
  • W. F. Liu
  • P. Wu
  • X. Hai
  • S. Y. Wang
  • G. Y. Liu
  • G. H. Rao
Research Paper

Abstract

Bi1−x Nd x FeO3 (x = 0, 0.05, 0.1, 0.15, 0.2) nanoparticles (about 20–50 nm) calcined at 500 and 600 °C, respectively, were prepared by an ethylene glycol-based sol–gel. The XRD analysis reveals that the BiFeO3 samples are in single phase, and their crystal structure is varied with the Nd content. Due to the small particle size, the uncompensated spin moments on the surface and the suppression of spin helical ordering structure result in a ferromagnetic phase of the BiFeO3 nanoparticles. The magnetization of the Nd-doped samples calcined at 600 °C is improved with the increase of Nd content, but for the Nd-doped samples calcined at 500 °C, it shows an opposite trend, which is ascribed to the interplay of size effect and the ratio of Fe2+:Fe3+ of samples calcined at different temperatures via XPS analysis. The dielectric properties were measured and analyzed for the samples calcined at 500 and 600 °C. Moreover, the leakage current value of the Bi1−x Nd x FeO3 samples can be modulated by the Nd doping, and it reaches a minimum at the Nd content around 0.1.

Keywords

Nanoparticles Ferromagnetic Spin helical ordering structure Dielectricity Leakage current Synthesis 

Notes

Acknowledgments

This study has been supported by the National Natural Science Foundation of China (11004148, 51074112, 11104202) and the Natural Science Foundation of Tianjin (11JCYBJC02700, 11JCZDJC21800).

References

  1. Agarwal RA, Ashima SS (2011) Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J Appl Phys 110:073909. doi: 10.1063/1.3646557 CrossRefGoogle Scholar
  2. Arya GS, Negi NS (2013) Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J Phys D 46:095004. doi: 10.1088/0022-3727/46/9/095004 CrossRefGoogle Scholar
  3. Arya GS, Kotnala RK, Negi NS (2013) Structural and multiferroic properties of Bi1−xInxFeO3 (0 ≤ x ≤ 0.20) nanoparticles. J Appl Phys 113:044107. doi: 10.1063/1.4788668 CrossRefGoogle Scholar
  4. Bi L, Taussig AR, Kim HS, Wang L, Dionne GF, Bono D, Persson K, Ceder G, Ross CA (2008) Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: An experimental and first-principles study. Phys Rev B 78:104106. doi: 10.1103/PhysRevB.78.104106 CrossRefGoogle Scholar
  5. Chakrabarti K, Das K, Sarkar B, De SK (2011) Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol–gel method. J Appl Phys 110:103905. doi: 10.1063/1.3662178 CrossRefGoogle Scholar
  6. Chakrabarti K, Das K, Sarkar B, Ghosh S, De SK, Sinha G, Lahtinen J (2012) Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl Phys Lett 101:042401. doi: 10.1063/1.4738992 CrossRefGoogle Scholar
  7. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20. doi: 10.1038/nmat1804 CrossRefGoogle Scholar
  8. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, Hoboken, pp 361–362Google Scholar
  9. Das SR, Choudhary RNP, Bhattacharya P, Katiyara RS (2007) Structural and multiferroic properties of La-modified BiFeO3 ceramics. J Appl Phys 101:034104. doi: 10.1063/1.2432869 CrossRefGoogle Scholar
  10. Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401. doi: 10.1103/PhysRevB.71.060401 CrossRefGoogle Scholar
  11. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(17):759–765. doi: 10.1038/nature05023 CrossRefGoogle Scholar
  12. Hu GD, Cheng X, Wu WB, Yang CH (2007) Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl Phys Lett 91:232909. doi: 10.1063/1.2822826 CrossRefGoogle Scholar
  13. Huang FZ, Lu XM, Lin WW, Wu XM, Kan Y, Zhu JS (2006) Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl Phys Lett 89:242914. doi: 10.1063/1.2404942 CrossRefGoogle Scholar
  14. Jaiswal A, Das R, Vivekanand K, Abraham PM, Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114:2108–2115. doi: 10.1021/jp910745g CrossRefGoogle Scholar
  15. Khomchenko VA, Kiselev DA, Bdikin IK, Shvartsman VV, Borisov P, Kleemann W, Vieira JM, Kholkin AL (2008) Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl Phys Lett 93:262905. doi: 10.1063/1.3058708 CrossRefGoogle Scholar
  16. Lotey GS, Verma NK (2012) Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J Nanopart Res 14:742. doi: 10.1007/s11051-012-0742-7 CrossRefGoogle Scholar
  17. Manna S, Ghoshal T, De SK (2010) Room temperature stabilized cubic zirconia nanocrystal: a giant dielectric material. J Phys D 43:295403. doi: 10.1088/0022-3727/43/29/295403 CrossRefGoogle Scholar
  18. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden PrairieGoogle Scholar
  19. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size dependent magnetic properties of single crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772. doi: 10.1021/nl063039w CrossRefGoogle Scholar
  20. Patil RD, Lokare SA, Devan RS, Chougule SS, Kanamadi CM, Kokekar YD, Chougule BK (2007) Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater Chem Phys 104:254–257. doi: 10.1016/j.matchemphys.2007.02.027 CrossRefGoogle Scholar
  21. Reddy VA, Pathak NP, Nath R (2012) Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J Alloy Compd 543:206–212. doi: 10.1016/j.jallcom.2012.07.098 CrossRefGoogle Scholar
  22. Singh A, Pandey V, Kotnala RK, Pandey D (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101:247602. doi: 10.1103/PhysRevLett.101.247602 CrossRefGoogle Scholar
  23. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392. doi: 10.1126/science.1113357 CrossRefGoogle Scholar
  24. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719. doi: 10.1126/science.1080615 CrossRefGoogle Scholar
  25. Yu BF, Li MY, Hu ZQ, Pei L, Guo DY, Zhao XZ, Dong SX (2008) Enhanced multiferroic properties of the high-valence Pr doped BiFeO3 thin film. Appl Phys Lett 93:182909. doi: 10.1063/1.3020296 CrossRefGoogle Scholar
  26. Yuan GL, Or SW (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905. doi: 10.1063/1.2266992 CrossRefGoogle Scholar
  27. Zhang HW, Zhao TY, Zhang J, Rong CB, Zhang SY, Shen BG, Li L, Zhang LG (2003) Large coercivity in nanocrystalline TbMn6Sn6 permanent magnets prepared by mechanical milling. J Phys D 36:1769. doi: 10.1088/0022-3727/36/15/303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China
  2. 2.College of Physics and Materials ScienceTianjin Normal UniversityTianjinPeople’s Republic of China
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of Information Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations