pH-Dependent shape changes of water-soluble CdS nanoparticles

  • An-Qi Zhang
  • Qing-Zhe Tan
  • Hui-Jun Li
  • Li Sui
  • Dong-Jin Qian
  • Meng Chen
Research Paper


In this study, a one-pot route was illustrated to synthesize stable water-soluble CdS nanoparticles stabilized by poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA). The CdS nanoparticles synthesized in alkaline solutions (pH 10.0) were irregular and small in size (~1.1 nm), while those generated in acid solutions (pH 4.5) tended to aggregate to form larger particles (~74.5 nm). Some bridge-like CdS wires linking several CdS particles were observed by tuning the molar ratio of elemental Cd to S. The ligand-detachment mechanism has been proposed to be the main reason for the formation of CdS assemblies synthesized in acid solutions. Further, photoluminescence (PL) studies confirmed that the use of the PSSMA stabilizer induces incomplete quenching of PL emissions in an acid solution, but complete quenching in an alkaline solution.


Cadmium sulfide nanoparticles Irreversible aggregation Ligand-detachment mechanism Emission quenching Semiconductor 



Financial supports from the National Science Foundation of China (20871031, 51073039, 11179015, and 51173108), Innovation Program of Shanghai Municipal Education Commission (12ZZ143), and Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (CURE) are gratefully acknowledged.


  1. Abdelhady AL, Afzaal M, Malik MA, O’Brien P (2011) Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s). J Mater Chem 21:18768–18775CrossRefGoogle Scholar
  2. Aldana J, Lavelle N, Wang YJ, Peng XG (2005) Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 127:2496–2504CrossRefGoogle Scholar
  3. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  4. Bera P, Kim C-H, Seok SI (2010) High-yield synthesis of quantum-confined CdS nanorods using a new dimeric cadmium(II) complex of S-benzyldithiocarbazate as single-source molecular precursor. Solid State Sci 12:532–535CrossRefGoogle Scholar
  5. Cai LJ, Wang M, Hu Y, Qian DJ, Chen M (2011) Synthesis and mechanistic study of stable water-soluble noble metal nanostructures. Nanotechnology 22:285601CrossRefGoogle Scholar
  6. Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elemer, Eden PrairireGoogle Scholar
  7. Chen M, Xie Y, Lu J, Xiong YJ, Zhang SY, Qian YT, Liu XM (2002) Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J Mater Chem 12:748–753CrossRefGoogle Scholar
  8. Chestnoy N, Harris TD, Hull R, Brus LE (1986) Luminescence and photophysics of CdS semiconductor clusters—the nature of the emitting electronic state. J Phys Chem 90:3393–3399CrossRefGoogle Scholar
  9. Chiang JC, Macdiarmid AG (1986) Polyaniline—protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205CrossRefGoogle Scholar
  10. Deng HY, Xu YY, Zhu BK, Wei XZ, Liu F, Cui ZY (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration(I). J Membr Sci 323:125–133CrossRefGoogle Scholar
  11. Dhyani H, Ali MA, Pandey MK, Malhotra BD, Sen P (2012) Electrophoretically deposited CdS quantum dots based electrode for biosensor application. J Mater Chem 22:4970–4976CrossRefGoogle Scholar
  12. Emin S, Sogoshi N, Nakabayashi S, Villeneuve M, Dushkin C (2009) Growth kinetics of CdS quantum dots and synthesis of their polymer nano-composites in CTAB reverse micelles. J Photochem Photobiol A 207:173–180CrossRefGoogle Scholar
  13. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976CrossRefGoogle Scholar
  14. Ge JP, Li YD (2004) Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv Funct Mater 14:157–162CrossRefGoogle Scholar
  15. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  16. Han L, Luo J, Kariuki NN, Maye MM, Jones VW, Zhong CJ (2003) Novel interparticle spatial properties of hydrogen-bonding mediated nanoparticle assembly. Chem Mat 15:29–37CrossRefGoogle Scholar
  17. Huang YY, Chen YJ, Hu CL, Zhang B, Shen T, Chen XD, Zhang MQ (2012) ‘Bridge’ effect of CdS nanoparticles in the interface of graphene-polyaniline composites. J Mater Chem 22:10999–11002CrossRefGoogle Scholar
  18. Jang BN, Wilkie CA (2005) The thermal degradation of polystyrene nanocomposite. Polymer 46:2933–2942CrossRefGoogle Scholar
  19. Khiew PS, Huang NM, Radiman S, Ahmad MS (2004) Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater Lett 58:516–521CrossRefGoogle Scholar
  20. Kim DS, Guiver MD, Nam SY, Il Yun T, Seo MY, Kim SJ, Hwang HS, Rhim JW (2006) Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). J Membr Sci 281:156–162CrossRefGoogle Scholar
  21. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964CrossRefGoogle Scholar
  22. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183CrossRefGoogle Scholar
  23. Koper O, Winecki S (2002) Specific Heats and Melting Points of Nanocrystalline Materials. Nanoscale Materials in Chemistry. Wiley, Hoboken, NJ, pp 263–277Google Scholar
  24. Lin CW, Huang YF, Kannan AM (2007) Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells. J Power Sour 171:340–347CrossRefGoogle Scholar
  25. Liu IS, Lo HH, Chien CT, Lin YY, Chen CW, Chen YF, Su WF, Liou SC (2008) Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands. J Mater Chem 18:675–682CrossRefGoogle Scholar
  26. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRefGoogle Scholar
  27. Oliveira JFA, Milão TM, Araújo VD, Moreira ML, Longo E, Bernardi MIB (2011) Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J Alloy Compd 509:6880–6883CrossRefGoogle Scholar
  28. Preston TC, Nuruzzaman M, Jones ND, Mittler S (2009) Role of hydrogen bonding in the pH-dependent aggregation of colloidal gold particles bearing solution-facing carboxylic acid groups. J Phys Chem C 113:14236–14244CrossRefGoogle Scholar
  29. Rengaraj S, Venkataraj S, Jee SH, Kim Y, Tai CW, Repo E, Koistinen A, Ferancova A, Sillanpaa M (2011) Cauliflower-like CdS microspheres composed of nanocrystals and their physicochemical properties. Langmuir 27:352–358CrossRefGoogle Scholar
  30. Rodríguez-Cabo B, Rodil E, Rodríguez H, Soto A, Arce A (2012) Direct preparation of sulfide semiconductor nanoparticles from the corresponding bulk powders in an ionic liquid. Angew Chem Int Edit 51:1424–1427CrossRefGoogle Scholar
  31. Sahin Y, Pekmez K, Yildiz A (2002) Electrochemical copolymerization of aniline and anilinesulfonic acids in FSO3H/acetonitrile solution. J Appl Polym Sci 85:1227–1235CrossRefGoogle Scholar
  32. Sajinovic D, Saponjic ZV, Cvjeticanin N, Marinovic-Cincovic M, Nedeljkovic JM (2000) Synthesis and characterization of CdS quantum dots-polystyrene composite. Chem Phys Lett 329:168–172CrossRefGoogle Scholar
  33. Si S, Mandal TK (2007) pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir 23:190–195CrossRefGoogle Scholar
  34. Sun LD, Fu XF, Wang MW, Liu CH, Liao CS, Yan CH (2000) Synthesis of CdS nanocrystal within copolymer. J Lumines 87–9:538–541CrossRefGoogle Scholar
  35. Tjipto E, Quinn JF, Caruso F (2005) Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties. Langmuir 21:8785–8792CrossRefGoogle Scholar
  36. Tjipto E, Quinn JF, Caruso F (2007) Layer-by-layer assembly of weak-strong copolymer polyelectrolytes: a route to morphological control of thin films. J Polym Sci Pol Chem 45:4341–4351CrossRefGoogle Scholar
  37. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mat 13:3843–3858CrossRefGoogle Scholar
  38. Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878CrossRefGoogle Scholar
  39. Wall FT (1944) The structure of copolymers II. J Am Chem Soc 66:2050–2057CrossRefGoogle Scholar
  40. Wang HM, Fang PF, Chen Z, Wang SJ (2007) Synthesis and characterization of CdS/PVA nanocomposite films. Appl Surf Sci 253:8495–8499CrossRefGoogle Scholar
  41. Yan B, Chen DR, Jiao XL (2004) Synthesis, characterization and fluorescence property of CdS/P(N-iPAAm) nanocomposites. Mater Res Bull 39:1655–1662CrossRefGoogle Scholar
  42. Yang Z-X, Zhong W, Zhang P, Xu M-H, Deng Y, Au C-T, Du Y-W (2012) Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes. Appl Surf Sci 258:7343–7347CrossRefGoogle Scholar
  43. Yin YD, Xu XL, Ge XW, Xia CJ, Zhang ZC (1998) Synthesis of cadmium sulfide nanoparticles in situ using gamma-radiation. Chem Commun 16:1641–1642CrossRefGoogle Scholar
  44. Yue J, Wang ZH, Cromack KR, Epstein AJ, Macdiarmid AG (1991) Effect of sulfonic-acid group on polyaniline backbone. J Am Chem Soc 113:2665–2671CrossRefGoogle Scholar
  45. Zhang XJ, Zhao QR, Tian YP, Xie Y (2004) Fabrication of CdS micropatterns: effects of intermolecular hydrogen bonding and decreasing capping ligand. Cryst Growth Des 4:355–359CrossRefGoogle Scholar
  46. Zhou B, Wu S (2008) Electrochemical preparation of poly(N-acetylaniline)/poly(4-styrenesulfonic acid-co-maleic acid) composite film towards ascorbic acid sensing. J Appl Polym Sci 109:2400–2407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • An-Qi Zhang
    • 2
  • Qing-Zhe Tan
    • 1
  • Hui-Jun Li
    • 1
  • Li Sui
    • 3
  • Dong-Jin Qian
    • 1
  • Meng Chen
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Advanced Materials LaboratoryFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Materials ScienceFudan UniversityShanghaiPeople’s Republic of China
  3. 3.School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations