Carbon dots mediated room-temperature synthesis of gold nanoparticles in poly(ethylene glycol)

  • Amit Jaiswal
  • Prateek Kumar Gautam
  • Siddhartha Sankar Ghosh
  • Arun Chattopadhyay
Research Paper


We report an efficient room-temperature synthesis of Au nanoparticles (NPs) using carbon dots (C-dots) as mediator in poly(ethylene glycol). The synthesis does not require any irradiation or heating for the reduction of the metal precursor and it yields smaller sized particles of ~15 nm, mostly octahedron in shape. The effect of varying concentrations of the Au precursor and C-dots on the synthesis was studied, which demonstrated the variation in particle size and shape with change in either the precursor or C-dots concentration. Time-resolved absorbance study for the synthesis of Au NPs showed the sigmoidal behavior for the autocatalytic growth having the lagging phase of induction period. The optimum concentration of the precursor and the C-dots were determined for the synthesis of well-dispersed Au NPs. The stability of the prepared Au NPs was also determined, showing that at optimum concentration of the precursor and C-dots, the particles were stable and did not precipitate for several days.


Carbon dots Gold nanoparticles Catalysis Poly(ethylene glycol) 



This research was supported by the Department of Biotechnology (Nos. BT/49/NE/TBP/2010 and BT/01/NE/PS/08), AJ is thankful to Dr. Pallab Sanpui for helpful discussion. Assistance from CIF, IIT Guwahati is acknowledged.


  1. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  2. Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167:191–200CrossRefGoogle Scholar
  3. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417CrossRefGoogle Scholar
  4. Chen DH, Huang YW (2002) Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol). J Colloid Interface Sci 255:299–302CrossRefGoogle Scholar
  5. Chen J, Saeki F, Wiley BJ, Cang H et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477CrossRefGoogle Scholar
  6. Cheng MMC, Cuda G, Bunimovich YL, Gaspari M et al (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19CrossRefGoogle Scholar
  7. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  8. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50:2810–2815CrossRefGoogle Scholar
  9. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  10. Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3:34–55Google Scholar
  11. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282CrossRefGoogle Scholar
  12. Esteves da Silva JCG, Gonçalves HMR (2011) Analytical and bioanalytical applications of carbon dots. Trends Anal Chem 30:1327–1336CrossRefGoogle Scholar
  13. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  14. Gonçalves H, Jorge PAS, Fernandes JRA, Esteves da Silva JCG (2010) Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sens Actuators B 145:702–707CrossRefGoogle Scholar
  15. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (1):121–123 Google Scholar
  16. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  17. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192CrossRefGoogle Scholar
  18. Guo X, Wang CF, Yu ZY, Chen L, Chen S (2012) Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun 48:2692–2694CrossRefGoogle Scholar
  19. Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034CrossRefGoogle Scholar
  20. Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, Cui D, Chen X (2012) Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 24:5104–5110CrossRefGoogle Scholar
  21. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409CrossRefGoogle Scholar
  22. Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A (2013) Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small. doi: 10.1002/smll.201203095 Google Scholar
  23. Khlebtsov N, Bogatyrev V, Dykman L, Khlebtsov B, Staroverov S et al (2013) Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3:167–180CrossRefGoogle Scholar
  24. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707CrossRefGoogle Scholar
  25. Li C, Shuford KL, Park QH, Cai W, Li Y, Lee EJ, Cho SO (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed 46:3264–3268CrossRefGoogle Scholar
  26. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434CrossRefGoogle Scholar
  27. Li H, Kang Z, Liu Y, Lee ST (2012a) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  28. Li Y, Liu S, Yao T, Sun Z, Jiang Z, Huang Y, Cheng H, Huang Y, Jiang Y, Xie Z, Pan G, Yan W, Wei S (2012b) Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor. Dalton Trans 41:11725–11730CrossRefGoogle Scholar
  29. Li H, Liu R, Lian S, Liu Y, Huang H, Kang Z (2013) Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 5:3289–3297CrossRefGoogle Scholar
  30. Liu Z (2012) Nano-carbons as theranostics. Theranostics 2:235–237CrossRefGoogle Scholar
  31. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613CrossRefGoogle Scholar
  32. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224CrossRefGoogle Scholar
  33. Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127CrossRefGoogle Scholar
  34. Mitra S, Chandra S, Patra P, Pramanik P, Goswami A (2011) Novel fluorescent matrix embedded carbon quantum dots for the production of stable gold and silver hydrosol. J Mater Chem 21:17638–17641CrossRefGoogle Scholar
  35. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  36. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  37. Pacławski K, Streszewski B, Jaworski W, Luty-Błocho M, Fitzner K (2012) Gold nanoparticles formation via gold(III) chloride complex ions reduction with glucose in the batch and in the flow microreactor systems. Colloids Surf A 413:208–215CrossRefGoogle Scholar
  38. Pölte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301CrossRefGoogle Scholar
  39. Qin X, Lu W, Chang G, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Novel synthesis of Au nanoparticles using fluorescent carbon nitride dots as photocatalyst. Gold Bull 45:61–67CrossRefGoogle Scholar
  40. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055CrossRefGoogle Scholar
  41. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 1:33–56CrossRefGoogle Scholar
  42. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M et al (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49:1103–1105CrossRefGoogle Scholar
  43. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851CrossRefGoogle Scholar
  44. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697CrossRefGoogle Scholar
  45. Streszewski B, Jaworski W, Pacławski K, Csapó E, Dékány I, Fitzner K (2012) Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate—kinetic studies. Colloids Surf A 397:63–72CrossRefGoogle Scholar
  46. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine Oxide–trioctylphospine mixture. Nano Lett 1:207–211CrossRefGoogle Scholar
  47. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotech Biol Med 2:257–262CrossRefGoogle Scholar
  48. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701CrossRefGoogle Scholar
  49. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  50. Wang F, Chen Y, Liu C, Ma D (2011) White light-emitting devices based on carbon dots’ electroluminescence. Chem Commun 47:3502–3504CrossRefGoogle Scholar
  51. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed 51:9297–9301CrossRefGoogle Scholar
  52. Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J (2013) Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal Methods 5:1328–1336CrossRefGoogle Scholar
  53. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  54. Wojnicki M, Rudnik E, Luty-Błocho M, Pacławski K, Fitzner K (2012) Kinetic studies of gold(III) chloride complex reduction and solid phase precipitation in acidic aqueous system using dimethylamine borane as reducing agent. Hydrometallurgy 127–128:43–53CrossRefGoogle Scholar
  55. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  56. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737CrossRefGoogle Scholar
  57. Yang X, Skrabalak SE, Li ZY, Xia Y, Wang LV (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett 7:3798–3802YCrossRefGoogle Scholar
  58. Yu H, Zhang HC, Li HT, Huang H, Liu Y, Ming H, Kang ZH (2012) ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J Chem 36:1031–1035CrossRefGoogle Scholar
  59. Zhang HC, Ming H, Lian S, Huang H, Li H, Zhang L, Liu Y, Kang Z, Lee ST (2011) Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans 40:10822–10825CrossRefGoogle Scholar
  60. Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, Kang ZH (2012) Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem 22:10501–10506CrossRefGoogle Scholar
  61. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 3–4:638–665CrossRefGoogle Scholar
  62. Zheng YB, Juluri BK, Mao X, Walker TR, Huang TJ (2008) Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays. J Appl Phys 103:014308(1)–014308(9)Google Scholar
  63. Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J Phys Chem C 115:4502–4506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amit Jaiswal
    • 1
  • Prateek Kumar Gautam
    • 2
  • Siddhartha Sankar Ghosh
    • 1
    • 3
  • Arun Chattopadhyay
    • 1
    • 2
  1. 1.Centre for NanotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of ChemistryIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations