Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites

  • B. P. Singh
  • Kamal Saini
  • Veena Choudhary
  • Satish Teotia
  • Shailaja Pande
  • Parveen Saini
  • R. B. Mathur
Research Paper


The high performance-multiwalled carbon nanotubes (MWCNTs) reinforced epoxy resin nanocomposites have been fabricated using industrially viable fast process of dispersion with high speed homogenizer (~30,000 rpm). This high energy homogenizer was found to be a successful technique for uniformly dispersion of MWCNTs and confirmed by scanning electron microscopy. Herein, two different lengths of MWCNTs, i.e., long length of ~350 μm aligned bundle (l-MWCNT) and short length of 1.5 μm (s-MWCNT) were used as reinforcement in epoxy resin. The effect of length of MWCNTs on the mechanical, electrical, and electromagnetic interference (EMI) shielding properties of MWCNTs/epoxy nanocomposites is investigated. The percolation threshold was obtained at 0.02 wt% for l-MWCNT compared to 0.11 for s-MWCNT. Due to very low percolation threshold and enhanced electrical conductivity (1.37 × 10−3 S cm−1 for 0.5 wt% l-MWCNT and 0.95 × 10−3 S cm−1 for 0.5 wt% s-MWCNT), absorption dominated EMI shielding effectiveness was achieved −16 dB for l-MWCNT compared to −11.5 dB for s-MWCNT with 0.5 wt% loading in Ku-band (12.4–18 GHz). This is the highest reported value for MWCNTs-epoxy composites for low loading level of 0.5 wt% at 2.5-mm thickness. In addition to this, flexural strength of the composites was found to be 125 MPa at 0.3 wt% for l-MWCNT and 113 MPa at 0.3 wt% for s-MWCNT from 95 MPa of pure cured epoxy suggesting the usefulness of this of material as strong microwave absorber.


Multiwalled carbon nanotubes Electromagnetic interference shielding Epoxy resin Nanocomposites 



The authors wish to express their gratitude to Prof. R. C. Budhani, Director NPL, to accord his permission to publish the results. Authors would like to thank to Mr. K. N. Sood and Mr. Jay Tawale for their support in carrying out SEM.

Supplementary material

11051_2013_2161_MOESM1_ESM.doc (947 kb)
Supplementary material 1 (DOC 947 kb)


  1. Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30:548–556CrossRefGoogle Scholar
  2. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34:689–694CrossRefGoogle Scholar
  3. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933–3943CrossRefGoogle Scholar
  4. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRefGoogle Scholar
  5. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube—epoxy composites. Adv Mater 17:1186–1191CrossRefGoogle Scholar
  6. Choudhary V, Singh BP, Mathur RB (2013) Carbon nanotubes and their composites. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech, Rijeka ISBN: 978-953-51-1125-2: doi: 10.5772/52897 Google Scholar
  7. Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354CrossRefGoogle Scholar
  8. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  9. Colbert DT (2003) Single-wall nanotubes: a new option for conductive plastics and engineering polymers. Plast Addit Compd 5:18Google Scholar
  10. Dang ZM, Shehzad K, Zha JW, Mujahid A, Hussain TI, Nie J, Shi CY (2011a) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72:28–35CrossRefGoogle Scholar
  11. Dang ZM, Shehzad K, Zha JW, Hussain T, Jun Bai J (2011b) On refining the relationship between aspect ratio and percolation threshold of practical carbon nanotubes/polymer nanocomposites. Jpn J Appl Phys 50:080214–080216Google Scholar
  12. Das NC, Khastgir D, Chaki TK, Chakraborthy A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Composites A 31:1069–1081CrossRefGoogle Scholar
  13. Du JH, Bai J, Cheng HM (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1:253–273CrossRefGoogle Scholar
  14. Dubnikova I, Kuvardina E, Krasheninnikov V, Lomakin S, Tchmutin I, Kuznetsov S (2010) The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J Appl Polym Sci 117:259–272Google Scholar
  15. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur RB (2011) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J of Polym Res 18:1397–1407CrossRefGoogle Scholar
  16. Gu H, Tadakamalla Zhang Xi, Huang Y, Jiang Y, Colorado A, Lou Z, Wei S, Guo Z (2013) Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multiwalled carbon nanotubes. J Mater Chem C 1:729–743CrossRefGoogle Scholar
  17. Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013a) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1:9138–9149CrossRefGoogle Scholar
  18. Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013b) Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J Polym Res 20:1–7Google Scholar
  19. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535CrossRefGoogle Scholar
  20. Huang Y, Li N, Ma Y, Feng D, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621CrossRefGoogle Scholar
  21. Inam F, Yan H, Reece MJ, Peijs T (2008) Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites. Nanotechnology 19:195710–1–195710–5CrossRefGoogle Scholar
  22. Ivanov E, Kotsilkova R, Krusteva E (2011) Effect of processing on rheological properties and structure development of/MWCNT nanocomposites. J Nanopart Res 13:3393–3403CrossRefGoogle Scholar
  23. Li N, Huang Y, Du F, He XB, Lin X, Gao HJ, Ma YF, Li FF, Chen YS, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145CrossRefGoogle Scholar
  24. Li Y, Chen C, Li J-T, Zhang S, Ni Y, Cai S, Huang J (2010) Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite. Nanoscale Res Lett 5:1170–1176CrossRefGoogle Scholar
  25. Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827CrossRefGoogle Scholar
  26. Lu Q, Keskar G, Ciocan R, Rao R, Mathur RB, Rao AM, Larcom LL (2006) Determination of carbon nanotube density by gradient sedimentation. J Phys Chem B 110:24371–24376CrossRefGoogle Scholar
  27. Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615CrossRefGoogle Scholar
  28. Mathur RB, Pande S, Singh BP (2010) Properties of PMMA/carbon nanotubes nanocomposites. Polym Nanotube Nanocomposites Synth Properties Applications 11:177Google Scholar
  29. Olmedo L, Hourquebie P, Jousse F (2001) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers. Wiley, Chichester, p 367Google Scholar
  30. Rafiee MA, Yavari F, Rafiee J, Koratkar N (2011) Fullerene—epoxy nanocomposites—enhanced mechanical properties at low nanofiller loading. J Nanopart Res 13:733–737CrossRefGoogle Scholar
  31. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415CrossRefGoogle Scholar
  32. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline—MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRefGoogle Scholar
  33. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2011) Enhanced microwave absorption behavior of polyaniline—CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161:1522–1526CrossRefGoogle Scholar
  34. Shehzad K, Dang ZM, Ahmad MN, Sagar RUR, Sajid Butt, Farooq MU, Wang TB (2013) Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 54:105–112CrossRefGoogle Scholar
  35. Shui X, Chung DDL (2000) Submicron diameter nickel filaments and their polymer matrix composites. J Mater Sci 35:1773–1785CrossRefGoogle Scholar
  36. Singh BP, Singh D, Mathur RB, Dhami TL (2008) Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett 3:444–453CrossRefGoogle Scholar
  37. Singh BP, Prabha, Saini P, Gupta T, Garg P, Kumar G, Pande I, Pande S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074CrossRefGoogle Scholar
  38. Singh BP, Choudhary V, Saini P, Mathur RB (2012) Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Advances 2:022151CrossRefGoogle Scholar
  39. Singh BP, Prasanta, Choudhary V, Saini P, Pande S, Singh VN, Mathur RB (2013a) Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites. J Nanopart Res 15:1–12. doi: 10.1007/s11051-013-1554-0 Google Scholar
  40. Singh BP, Bhardwaj P, Choudhary V, Mathur RB (2013b) Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites. Appl Nanosci. doi: 10.1007/s13204-013-0214-0 Google Scholar
  41. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  42. Zhang W, Picu RC, Koratkar N (2008) The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19:285709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. P. Singh
    • 1
    • 2
  • Kamal Saini
    • 1
  • Veena Choudhary
    • 2
  • Satish Teotia
    • 1
  • Shailaja Pande
    • 1
  • Parveen Saini
    • 3
  • R. B. Mathur
    • 1
  1. 1.Physics and Engineering of Carbon, Division of Materials Physics and EngineeringCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Centre for Polymer Science and EngineeringIndian Institute of Technology DelhiDelhiIndia
  3. 3.Polymeric and Soft Materials SectionCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations