Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties

Research Paper


A simple low-cost hydrothermal method has been developed to fabricate uniformly dispersed octahedral Fe3O4 nanoparticles with tunable size. The particle size can be reduced to 20–30 nm under the effect of phosphate, meanwhile, the edetate disodium can improve the dispersivity of particles. High-resolution transmission electron microscope showed that the octahedral Fe3O4 nanoparticle was enclosed by eight (111) planes. Octahedral γ-Fe2O3 nanoparticles were obtained by reoxidizing the as-synthesized Fe3O4 nanoparticles. The microwave absorption properties of the octahedral Fe3O4 and γ-Fe2O3 nanoparticles were measured in the frequency range of 2–18 GHz. A minimum reflection loss of −28 dB was observed at 8.6 GHz for octahedral Fe3O4 nanoparticles.


Fe3O4 Hydrothermal synthesis Nanostructures γ-Fe2O3 Microwave absorption properties 

Supplementary material

11051_2013_2114_MOESM1_ESM.doc (3.5 mb)
Supplementary material 1 (DOC 3543 kb)


  1. Chen SY, Feng J, Guo XF, Hong JM, Ding WP (2005) One-step wet chemistry for preparation of magnetite nanorods. Mater Lett 59:985–988CrossRefGoogle Scholar
  2. Chen N, Mu GH, Pan XF, Gan KK, Gu MY (2007) Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Mater Sci Eng B 139:256–260CrossRefGoogle Scholar
  3. Chen J, Huang KL, Liu SQ (2009) Hydrothermal preparation and characterization of octadecahedron Fe3O4 film. J Alloys Compd 484:207–210CrossRefGoogle Scholar
  4. Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115:13603–13608CrossRefGoogle Scholar
  5. Cornell RM, Schwertmann U (2003) The iron oxides: structure, proper-ties, reactions, occurrences and uses. Wiley, WeinheimCrossRefGoogle Scholar
  6. Daou TJ, Begin-Colin S, Thomas F, Derory A, Bernhardt P, Pourroy G (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19:4494–4505CrossRefGoogle Scholar
  7. de Faria DLA, Silva SV, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878Google Scholar
  8. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785CrossRefGoogle Scholar
  9. Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808CrossRefGoogle Scholar
  10. Fu L, Dravid VP, Johnson DL (2001) Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles. Appl Surf Sci 181:173–178CrossRefGoogle Scholar
  11. Hu CQ, Gao ZH, Yang XR (2006) Fabrication and magnetic properties of Fe3O4 octahedra. Chem Phys Lett 429:513–517CrossRefGoogle Scholar
  12. Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225:256–261CrossRefGoogle Scholar
  13. Kong J, Liu JR, Wang FL, Luan LQ, Itoh M, Machida K (2011) Electromagnetic wave absorption properties of Fe3O4 octahedral nanocrystallines in gigahertz range. Appl Phys A 105:351–354CrossRefGoogle Scholar
  14. Kurlyandskaya GV, Cunanan J, Bhagat SM, Aphesteguy JC, Jacoco SE (2007) Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J Phys Chem Solids 8:1527–1532CrossRefGoogle Scholar
  15. Li XY, Si ZJ, Lei YQ, Tang JK, Wang S, Su SQ, Song SY, Zhao LJ, Zhang HJ (2010) Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. CrystEngComm 12:2060–2063CrossRefGoogle Scholar
  16. Lian SY, Wang E, Gao L, Kang ZH, Wu D, Lan Y, Xu L (2004) Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid State Commun 132:375–378CrossRefGoogle Scholar
  17. Liu ZL, Wang X, Yao KL (2004) Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci 39:2633–2637CrossRefGoogle Scholar
  18. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  19. Maslar JE, Hurst WS, Bowers WJ (2000) In situ Raman spectroscopic investigation of aqueous iron corrosion at elevated temperatures and pressures. J Electrochem Soc 147:2532–2542CrossRefGoogle Scholar
  20. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park JG, Noh HG, Kim JY, Park JH, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44:2872–2877CrossRefGoogle Scholar
  21. Peng AZ, Peng XG (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353CrossRefGoogle Scholar
  22. Peng DF, Beysen S, Li Q, Jian JK, Sun YF, Jiwuer J (2009) Hydrothermal growth of octahedral Fe3O4 crystals. Particuology 7:35–38CrossRefGoogle Scholar
  23. Qi HP, Chen QW, Wang MS, Wen MH, Xiong J (2009a) Study of self-assembly of octahedral magnetite under an external magnetic field. J Phys Chem C 113:17301–17305CrossRefGoogle Scholar
  24. Qi HP, Ye J, Tao N, Wen MH, Chen QW (2009b) Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. J Cryst Growth 311:394–398CrossRefGoogle Scholar
  25. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  26. Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc 34:845–852CrossRefGoogle Scholar
  27. Varadwaj KSK, Panigrahi MK, Ghose J (2004) Effect of capping and particle size on Raman laser-induced degradation of γ-Fe2O3 nanoparticles. J Solid State Chem 177:4286–4292CrossRefGoogle Scholar
  28. Wan SR, Huang JS, Yan HS, Liu KL (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303CrossRefGoogle Scholar
  29. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175CrossRefGoogle Scholar
  30. Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320:2132–2139CrossRefGoogle Scholar
  31. Wang D, Ma Q, Yang P (2012) Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition. J Nanosci Nanotechnol 12:6432–6438CrossRefGoogle Scholar
  32. Wang GQ, Chang YF, Wang LF, Liu LD, Liu C (2013) Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles. Mater Res Bull 48:1007–1012CrossRefGoogle Scholar
  33. Wei J, Liu JH, Li SM (2007) Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J Magn Magn Mater 312:414–417CrossRefGoogle Scholar
  34. Wu W, Xiao XH, Zhang SF (2010) Synthesis and magnetic properties of maghemite (γ-Fe2O3) short-nanotubes. Nanoscale Res Lett 5:1474–1479CrossRefGoogle Scholar
  35. Xiong Y, Ye J, Gu XY, Chen QW (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003CrossRefGoogle Scholar
  36. Zhang JL, Wang Y, Ji H, Wei YJ, Wu NZ, Zuo BJ, Wang QL (2005) Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. J Catal 229:114–118CrossRefGoogle Scholar
  37. Zhang DE, Zhang XJ, Ni XM (2007) Fabrication and characterization of Fe3O4 octahedrons via an edta-assisted route. Cryst Growth Des 7:2117–2119CrossRefGoogle Scholar
  38. Zhang YC, Tang JY, Hu XY (2008) Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J Alloys Compd 462:24–28CrossRefGoogle Scholar
  39. Zhang LH, Wu JJ, Liao HB (2009) Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun 29:4378–4380CrossRefGoogle Scholar
  40. Zhao LJ, Duan LF (2010) Uniform Fe3O4 octahedra with tunable edge length—synthesis by a facile polyol route and magnetic properties. Eur J Inorg Chem 36:5635–5639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Carbon Materials, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations