Preparation of hydroxyapatite-decorated poly(lactide-co-glycolide) microspheres for paclitaxel delivery

  • Chie Kojima
  • Kenji Watanabe
  • Takashi Nagayasu
  • Yuki Nishio
  • Rie Makiura
  • Atsushi Nakahira
Research Paper


Paclitaxel (Tax) is an anticancer drug with extremely low water solubility, and development of the formulation without organic solvents is highly desirable. Hydroxyapatite (HA) is a biocompatible and porous inorganic material that can be used effectively in drug delivery systems, but poor dispersibility in water limits its application. In this study, HA-decorated poly(lactide-co-glycolide) (PLG) spheres with several micrometers were prepared and characterized. PLG microspheres adsorbed Tax, independent in the HA decorating, and their water dispersibility was retained after the HA decorating. Tax-loaded HA-decorated PLG microspheres (Tax/HA/PLG) could thus be highly dispersed in water, increasing their cellular uptake. Most Tax molecules were stably adsorbed to the HA and HA-decorated PLG (HA/PLG) particles. Although the cytotoxicity of Tax-loaded HA was much lower than that of free Tax, the drug activity of Tax/HA/PLG was markedly improved. Since the morphology of microtubules was changed after the Tax/HA/PLG treatment, the HA/PLG could work as a carrier for Tax.


Paclitaxel Hydroxyapatite Poly(lactide-co-glycolide) Microsphere Drug delivery 



This work was supported in part by grants from Special Coordination Funds for Promoting Science and Technology of MEXT [Improvement of Research Environment for Young Researchers (FY 2008-2012)].


  1. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183. doi: 10.1016/j.addr.2010.10.008 CrossRefGoogle Scholar
  2. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421. doi: 10.1016/j.actbio.2011.11.017 CrossRefGoogle Scholar
  3. Chlopek J, Morawska-Chochol A, Paluszkiewicz C, Jaworska J, Kasperczyk J, Dobrzynski P (2009) FTIR and NMR study of poly(lactide-co-glycolide) and hydroxyapatite implant degradation under in vivo conditions. Polym Degrad Stab 94:1479–1485. doi: 10.1016/j.polymdegradstab.2009.05.010 CrossRefGoogle Scholar
  4. Choi S, Murphy WL (2010) Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater 6:3426–3435. doi: 10.1016/j.actbio.2010.03.020 CrossRefGoogle Scholar
  5. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controll Release 161:505–522. doi: 10.1016/j.jconrel.2012.01.043 CrossRefGoogle Scholar
  6. Dosio F, Reddy LH, Ferrero A, Stella B, Cattel L, Couvreur P (2010) Novel nanoassemblies composed of squalenoyl-paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjugate Chem 21:1349–1361. doi: 10.1021/bc100154g CrossRefGoogle Scholar
  7. Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Controll Release 83:273–286. doi: 10.1016/S0168-3659(02)00212-2 CrossRefGoogle Scholar
  8. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-a review. Int J Pharm 415:34–52. doi: 10.1016/j.ijpharm.2011.05.049 CrossRefGoogle Scholar
  9. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB (2012) Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 64:1090–1110. doi: 10.1016/j.addr.2012.01.008 CrossRefGoogle Scholar
  10. Jongpaiboonkit L, Franklin-Ford T, Murphy WL (2009) Growth of hydroxyapatite coatings on biodegradable polymer microspheres. ACS Appl Mater Interfaces 1:1504–1511. doi: 10.1021/am9001716 CrossRefGoogle Scholar
  11. Koudelka S, Turánek J (2012) Liposomal paclitaxel formulations. J Controll Release 163:322–334. doi: 10.1016/j.jconrel.2012.09.006 CrossRefGoogle Scholar
  12. Lee D, Upadhye K, Kumta PN (2012) Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery. Mater Sci Eng B 177:289–302. doi: 10.1016/j.mseb.2011.11.001 CrossRefGoogle Scholar
  13. Lin Y, Li Y, Ooi CP (2012) 5-Fluorouracil encapsulated HA/PLGA composite microspheres for cancer therapy. J Mater Sci Mater Med 23:2453–2460. doi: 10.1007/s10856-012-4723-2 CrossRefGoogle Scholar
  14. Luo C, Wang Y, Chen Q, Han X, Liu X, Sun J, He Z (2012) Advances of paclitaxel formulations based on nanosystem delivery technology. Mini Rev Med Chem 12:434–444. doi: 10.2174/138955712800493924 CrossRefGoogle Scholar
  15. Lv PP, Ma YF, Yu R, Yue H, Ni DZ, Wei W, Ma GH (2012) Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD). Mol Pharm 9:1736–1747. doi: 10.1021/mp300051h CrossRefGoogle Scholar
  16. Nizamutdinova IT, Lee GW, Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC, Kim HJ (2008) Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells. Int J Oncol 33:485–491. doi: 10.3892/ijo_00000031 Google Scholar
  17. Shi X, Wang Y, Ren L, Gong Y, Wang DA (2009) Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res 26:422–430. doi: 10.1007/s11095-008-9759-0 CrossRefGoogle Scholar
  18. Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192. doi: 10.1016/S0378-5173(01)00986-3 CrossRefGoogle Scholar
  19. Wang S, Wen S, Shen M, Guo R, Cao X, Wang J, Shi X (2011) Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int J Nanomedicine 6:3449–3459. doi: 10.2147/IJN.S27166 Google Scholar
  20. Watanabe K, Nishio Y, Makiura R, Nakahira A, Kojima C (2013) Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells. Int J Pharm 446:81–86. doi: 10.1016/j.ijpharm.2013.02.002 CrossRefGoogle Scholar
  21. Xu Q, Czernuszka JT (2008) Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. J Controll Release 127:146–153. doi: 10.1016/j.jconrel.2008.01.017 CrossRefGoogle Scholar
  22. Zhang D, Tian A, Xue X, Wang M, Qiu B, Wu A (2012) The effect of temozolomide/poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite microspheres on glioma U87 cells behavior. Int J Mol Sci 13:1109–1125. doi: 10.3390/ijms13011109 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Chie Kojima
    • 1
  • Kenji Watanabe
    • 2
  • Takashi Nagayasu
    • 3
  • Yuki Nishio
    • 3
  • Rie Makiura
    • 1
  • Atsushi Nakahira
    • 3
  1. 1.Nanoscience and Nanotechnology Research Center, Research Organization for the 21st CenturyOsaka Prefecture UniversitySakaiJapan
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  3. 3.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations