Skip to main content
Log in

A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The estimation of nanoparticle agglomerates’ size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1–0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackler HD, French RH, Chiang YM (1996) Comparisons of hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J Colloid Interface Sci 179(2):460–469

    Article  CAS  Google Scholar 

  • Castellanos A (2005) The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv Phys 54(4):263–376

    Article  CAS  Google Scholar 

  • Castellanos A, Valverde JM, Quintanilla MAS (2001) Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys Rev E 64:041,304

    Article  CAS  Google Scholar 

  • Chaouki J, Chavarie C, Klvana D, Pajonk G (1985) Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels. Powder Technol 43(2):117–125

    Article  CAS  Google Scholar 

  • de Martín L, Bouwman WG, van Ommen JR (2012) Two-level hierarchical structure in nano-powder agglomerates in gas media. In: Bulleting of the Americal Physical Society, vol 57

  • Espin MJ, Valverde JM, Quintanilla MAS, Castellanos A (2009) Electromechanics of fluidized beds of nanoparticles. Phys Rev E 79:011,304

    Article  CAS  Google Scholar 

  • Forsyth AJ, Rhodes MJ (2000) A simple model incorporating the effects of deformation and asperities into the van der waals force for macroscopic spherical solid particles. J Colloid Interface Sci 223(1):133–138

    Article  CAS  Google Scholar 

  • French RH, Cannon RM, DeNoyer LK, Chiang YM (1994) Full spectral calculation of non-retarded hamaker constants for ceramic systems from interband transition strengths. Solid State Ion 75:13–33

    Article  Google Scholar 

  • Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, USA

    Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, London

    Google Scholar 

  • Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304(2):524–529

    Article  CAS  Google Scholar 

  • Kim HY, Sofo JO, Velegol D, Cole MW, Lucas AA (2007) Van der waals dispersion forces between dielectric nanoclusters. Langmuir 23(4):1735–1740

    Article  CAS  Google Scholar 

  • Krupp H (1967) Particle adhesion, theory and experiment. Adv Colloid Interface Sci 1:111–239

    Article  CAS  Google Scholar 

  • Li Q, Rudolph V, Peukert W (2006) London-van der waals adhesiveness of rough particles. Powder Technol 161(3):248–255

    Article  CAS  Google Scholar 

  • Matsuda S, Hatano H, Tsutsumi A (2001) Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem Eng J 82(13):183–188

    Article  CAS  Google Scholar 

  • Matsuda S, Hatano H, Muramoto T, Tsutsumi A (2004) Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE J 50(11):2763–2771

    Article  CAS  Google Scholar 

  • Nam CH, Pfeffer R, Dave RN, Sundaresan S (2004) Aerated vibrofluidization of silica nanoparticles. AIChE J 50(8):1776–1785

    Article  CAS  Google Scholar 

  • Quintanilla MAS, Valverde JM, Espin MJ, Castellanos A (2012) Electrofluidization of silica nanoparticle agglomerates. Ind Eng Chem Res 51(1):531–538

    Article  CAS  Google Scholar 

  • Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16

    Article  CAS  Google Scholar 

  • Rumpf H (1990) Particle technology. Chapman & Hall, London

    Book  Google Scholar 

  • Shabanian J, Jafari R, Chaouki J (2012) Fluidization of ultrafine powders. Int Rev Chem Eng 4(1):16–50

    Google Scholar 

  • Tahmasebpoor M, de Martín L, Talebi M, Mostoufi N, van Ommen JR (2013) The role of the hydrogen bond in dense nanoparticle-gas suspensions. Phys Chem Chem Phys 15:5788–5793

    Article  CAS  Google Scholar 

  • Valverde JM, Castellanos A (2006) Fluidization of nanoparticles: a modified Richardson–Zaki law. AIChE J 52(2):838–842

    Article  CAS  Google Scholar 

  • Valverde JM, Castellanos A (2008a) Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chem Eng J 140(13):296–304

    Article  CAS  Google Scholar 

  • Valverde JM, Castellanos A (2008b) A modified Richardson–Zaki equation for fluidization of geldart B magnetic particles. Powder Technol 181(3):347–350

    Article  CAS  Google Scholar 

  • van Ommen JR, Valverde JM, Pfeffer R (2012) Fluidization of nanopowders: a review. J Nanopart Res 14(3):737–766

    Article  Google Scholar 

  • Wang XS, Palero V, Soria J, Rhodes MJ (2006a) Laser-based planar imaging of nano-particle fluidization: Part I. Determination of aggregate size and shape. Chem Eng Sci 61(16):5476–5486

    Article  CAS  Google Scholar 

  • Wang XS, Palero V, Soria J, Rhodes MJ (2006b) Laser-based planar imaging of nano-particle fluidization: Part II. Mechanistic analysis of nanoparticle aggregation. Chem Eng Sci 61(24):8040–8049

    Article  CAS  Google Scholar 

  • Wu MK, Friedlander SK (1993) Note on the power law equation for fractal-like aerosol agglomerates. J Colloid Interface Sci 159(1):246–248

    Article  CAS  Google Scholar 

  • Yao W, Guangsheng G, Fei W, Jun W (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124(12):152–159

    Article  Google Scholar 

  • Zhou L, Zhang F, Zhou T, Kage H, Mawatari Y (2013) A model for estimating agglomerate sizes of non-magnetic nanoparticles in magnetic fluidized beds. Korean J Chem Eng 30(2):501–507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/ 2007–2013) / ERC Grant, Agreement no 279632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian de Martín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Martín, L., van Ommen, J.R. A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds. J Nanopart Res 15, 2055 (2013). https://doi.org/10.1007/s11051-013-2055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2055-x

Keywords

Navigation