Advertisement

Two-dimensional Zn k In2O k+3 nanostructures: synthesis, growth mechanism, self-assembly, and luminescence

  • Javier Bartolomé
  • David Maestre
  • Matteo Amati
  • Ana Cremades
  • Javier Piqueras
Research Paper

Abstract

Indium–zinc oxide nanostructures, such as nanosheets, nanobelts, and wires formed by oriented stacks of nanoplates have been grown by a controlled thermal evaporation method without the use of a foreign catalyst. Surface features in the stacked hexagonal nanoplates suggest a dislocation-driven growth mechanism for these structures. A growth model for these stacks is proposed based on changes in velocity growth rate between the outer and the inner part of the plates. Zn incorporation has been investigated by means of energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The formation of Zn k In2O k+3 ternary compounds has been demonstrated. Cathodoluminescence emission and its correlation with the morphology of the structures and Zn content have been studied.

Keywords

Indium–zinc oxide Nanosheets Transparent conducting oxides Luminescence and surface electronic properties Semiconductor nanostructure 

Notes

Acknowledgments

This work has been supported by Ministerio de Economía y Competitividad (Projects MAT 2012-31959, and Consolider CSD 2009-00013). J. Bartolomé acknowledges the financial support from Universidad Complutense de Madrid.

References

  1. Alemán B, Fernández P, Piqueras J (2009) Indium-zinc-oxide nanobelts with superlattice structure. Appl Phys Lett 95:013111CrossRefGoogle Scholar
  2. Alemán B, Fernández P, Piqueras J (2010) Dense vertical nanoplates arrays and nanobelts of indium doped ZnO grown by thermal treatment of ZnS–In2O3 powders. J Cryst Growth 312:3117–3120CrossRefGoogle Scholar
  3. Alemán B, Ortega Y, García JA, Fernández P, Piqueras J (2011) Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation–deposition. J Appl Phys 110:014317CrossRefGoogle Scholar
  4. Bartolomé J, Maestre D, Cremades A, Amati M, Piqueras J (2011) Indium zinc oxide pyramids with pinholes and nanopipes. J Phys Chem C 115:8354–8360CrossRefGoogle Scholar
  5. Bartolomé J, Maestre D, Cremades A, Amati M, Piqueras J (2013) Composition-dependent electronic properties of indium–zinc–oxide elongated microstructures. Acta Mater 61:1932–1943CrossRefGoogle Scholar
  6. Bierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S (2008) Dislocation-driven nanowire growth and Eshelby twist. Science 320:1060–1063CrossRefGoogle Scholar
  7. Cherns D, Meshi L, Griffiths I, Khongphetsak S, Novokov SV, Farley NRS, Campion RP, Foxon CT (2008) Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy. Appl Phys Lett 93:111911CrossRefGoogle Scholar
  8. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRefGoogle Scholar
  9. Fan JCC, Goodenough JB (1977) X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J Appl Phys 48:3524–3531CrossRefGoogle Scholar
  10. Gaarenstroom SW, Winograd N (1977) Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J Chem Phys 67:3500–3506CrossRefGoogle Scholar
  11. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  12. Guha P, Kar S, Chaudhuri S (2004) Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties. Appl Phys Lett 85:3851–3853CrossRefGoogle Scholar
  13. Hosono E, Fujihara S, Honma I, Zhou H (2005) The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv Mater 17:2091–2094CrossRefGoogle Scholar
  14. Hsin CL, He JH, Chen LJ (2006) Modulation of photoemission spectra of In2O3 nanowires by the variation in Zn doping level. Appl Phys Lett 88:063111CrossRefGoogle Scholar
  15. Jeong JS, Lee JY, Lee CJ, An SJ, Yi G-C (2004) Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem Phys Lett 384:246–250CrossRefGoogle Scholar
  16. King PDC, Veal TD, Fuchs F, Wang CY, Payne DJ, Bourlange A, Zhang H, Bell GR, Cimalla V, Ambacher O et al (2009) Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys Rev B 79:205211CrossRefGoogle Scholar
  17. Kumar B, Gong H, Akkipeddi R (2005) A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system. J Appl Phys 97:063706CrossRefGoogle Scholar
  18. Lao JY, Huang JY, Wang DZ, Ren ZF, Steeves D, Kimball B, Porter W (2004) ZnO nanowalls. Appl Phys A 78:539–542CrossRefGoogle Scholar
  19. Lee MS, Choi WC, Kim EK, Kim CK, Min SK (1996) Characterization of the oxidized indium thin films with thermal oxidation. Thin Solid Films 279:1–3CrossRefGoogle Scholar
  20. Ley L, Pollak RA, McFeely FR, Kowalczyk SP, Shirley DA (1974) Total valence-band densities of states of III–V and II–VI compounds from X-ray photoemission spectroscopy. Phys Rev B 9:600–621CrossRefGoogle Scholar
  21. Li J, Fan H, Jia X (2010) Multilayered ZnO nanosheets with 3D porous architectures: synthesis and gas sensing application. J Phys Chem C 114:14684–14691CrossRefGoogle Scholar
  22. Maestre D, Häussler D, Cremades A, Jäger W, Piqueras J (2011a) Nanopipes in In2O3 nanorods grown by a thermal treatment. Cryst Growth Des 11:1117–1121CrossRefGoogle Scholar
  23. Maestre D, Häussler D, Cremades A, Jäger W, Piqueras J (2011b) Complex defect structure in the core of Sn-Doped In2O3 nanorods and its relationship with a dislocation-driven growth mechanism. J Phys Chem C 115:18083–18087CrossRefGoogle Scholar
  24. Magdas DA, Cremades A, Piqueras J (2006) Growth and luminescence of elongated In2O3 micro- and nanostructures in thermally treated InN. Appl Phys Lett 88:113107CrossRefGoogle Scholar
  25. Mandal A, Mitra S, Datta A, Banerjee S, Dhara S, Chakravorty D (2012) Multiphonon scattering and photoluminescence of two dimensional ZnS nanosheets grown within Na-4 mica. J Appl Phys 112:074321CrossRefGoogle Scholar
  26. Mazzera M, Zha M, Calestani D, Zappettini A, Lazzarini L, Salviati G, Zanotti L (2007) Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments. Nanotechnology 18:355707CrossRefGoogle Scholar
  27. Meng F, Jin S (2011) The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett 12:234–239CrossRefGoogle Scholar
  28. Morin SA, Jin S (2010) Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Lett 10:3459–3463CrossRefGoogle Scholar
  29. Morin SA, Bierman MJ, Tong J, Jin S (2010) Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328:476–480CrossRefGoogle Scholar
  30. Morin SA, Forticaux A, Bierman MJ, Jin S (2011) Screw dislocation-driven growth of two-dimensional nanoplates. Nano Lett 11:4449–4455CrossRefGoogle Scholar
  31. Na CW, Bae SY, Park J (2005) Short-period superlattice structure of Sn-doped In2O3(ZnO)4 and In2O3(ZnO)5 nanowires. J Phys Chem B 109:12785–12790CrossRefGoogle Scholar
  32. Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, Meyyappan M (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249CrossRefGoogle Scholar
  33. Pradhan D, Kumar M, Ando Y, Leung KT (2008) Efficient field emission from vertically grown planar ZnO nanowalls on an ITO-glass substrate. Nanotechnology 19:035603CrossRefGoogle Scholar
  34. Shen G, Bando Y, Lee C-J (2005) Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process. J Phys Chem B 109:10779–10785CrossRefGoogle Scholar
  35. Singh N, Yan C, Lee PS (2010) Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors. Sens Actuatators B 150:19–24CrossRefGoogle Scholar
  36. Tang Q, Zhou W, Zhang W, Ou S, Jiang K, Yu W, Qian Y (2005) Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst Growth Des 5:147–150CrossRefGoogle Scholar
  37. Wang NW, Yang YH, Yang GW (2009) Indium Oxide–Zinc oxide nanosized heterostructure and whispering gallery mode luminescence emission. J Phys Chem C 113:15480–15483CrossRefGoogle Scholar
  38. Yan Y, Zhou L, Zhang Y, Zhang J, Hu S (2008) Large-scale synthesis of In2O3 nanocubes under nondynamic equilibrium model. Cryst Growth Des 8:3285–3289CrossRefGoogle Scholar
  39. Yang H, Zhang R, Dong H, Yu J, Yang W, Chen D (2008) In situ growth of self-assembled and single In2O3 nanosheets on the surface of indium grains. Cryst Growth Des 8:3154–3159CrossRefGoogle Scholar
  40. Zhang W, Jie J, He Z, Tao S, Fan X, Zhou Y, Yuan G, Luo L, Zhang W, Lee CS et al (2008) Single zinc-doped indium oxide nanowire as driving transistor for organic light-emitting diode. Appl Phys Lett 92:153312CrossRefGoogle Scholar
  41. Zheng MJ, Zhang LD, Li GH, Zhang XY, Wang XF (2001) Ordered indium-oxide nanowire arrays and their photoluminescence properties. Appl Phys Lett 79:839–841CrossRefGoogle Scholar
  42. Zhu J, Peng H, Marshal AF, Barnett DM, Nix WD, Cui Y (2008) Formation of chiral branched nanowires by the Eshelby twist. Nat Nanotechnol 3:477–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Javier Bartolomé
    • 1
  • David Maestre
    • 1
  • Matteo Amati
    • 2
  • Ana Cremades
    • 1
  • Javier Piqueras
    • 1
  1. 1.Departamento de Física de MaterialesUniversidad Complutense de MadridMadridSpain
  2. 2.Sincrotrone TriesteBasovizza-TriesteItaly

Personalised recommendations