Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate

  • Kuppusamy Swaminathan Suganthi
  • Natarajan Anusha
  • Kalpoondi Sekar Rajan
Research Paper


The rheological characteristics of ZnO–propylene glycol nanofluid have been studied over a temperature range of 10–140 °C and nanoparticle concentration range of 0–2 vol%. The addition of ZnO nanoparticles (35–40 nm) to propylene glycol (PG) weakens the inter-molecular hydrogen bonding in propylene glycol. This is reflected in the reduced values of viscosity for nanoparticle dispersions (nanofluids) compared to that of base fluid. The viscosity decrease is more pronounced at lower temperatures and at higher nanoparticle concentration. The percentage reduction in viscosity is 53 and 32 % at 10 and 28 °C, respectively, for 2 vol% ZnO–propylene glycol nanofluid compared to pure PG. This dispersion has immense potential for cooling application owing to lower viscosity. At high temperatures where the hydrogen bonds in the base fluid are substantially weaker, viscosity of ZnO–PG dispersions is higher than that of PG. An estimated 80 and 37 % enhancement in heat transfer coefficient can be achieved using 2 vol% ZnO–PG nanofluid at temperatures of 10 and 28 °C, respectively.


ZnO–propylene glycol dispersion Hydrogen bond Viscosity Nanoparticle concentration Colloids 



This work is supported by (i) INSPIRE fellowship (Reg. No.: IF110312) of Department of Science and Technology (DST), India. (ii) PG teaching Grant No.: SR/NM/PG-16/2007 of Nano Mission Council, Department of Science & Technology (DST), India (iii) Grant No.: SR/FT/ET-061/2008, DST, India and (iv) Research & Modernization Project #1, SASTRA University, India. The authors thank SASTRA University for the infrastructural support extended during the work.


  1. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New YorkGoogle Scholar
  2. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, FieÂvet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi: 10.1021/nl052326h CrossRefGoogle Scholar
  3. Chaplin M (2007) Water’s hydrogen bond strength. Cond Mat 0706.1355Google Scholar
  4. Chen CC, Liu P, Lu C (2008) Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem Eng J 144:509–513. doi: 10.1016/j.cej.2008.07.047 CrossRefGoogle Scholar
  5. Chen H, Witharana S, Jin Y, Kim C, Ding Y (2009) Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 7:151–157. doi: 10.1016/j.partic.2009.01.005 CrossRefGoogle Scholar
  6. Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV et al (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194:75–80. doi: 10.1016/j.powtec.2009.03.025 CrossRefGoogle Scholar
  7. Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids —a review. Heat Transfer Eng 27:3–19. doi: 10.1080/01457630600904593 CrossRefGoogle Scholar
  8. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067. doi: 10.1016/j.ijheatmasstransfer.2008.10.023 CrossRefGoogle Scholar
  9. Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf 53:334–344. doi: 10.1016/j.ijheatmasstransfer.2009.09.024 CrossRefGoogle Scholar
  10. Farouk A, Moussa S, Ulbricht M, Textor T (2012) ZnO nanoparticles–chitosan composite as antibacterial finish for textiles. Int J Carbohydr Chem 2012:693629. doi: 10.1155/2012/693629 Google Scholar
  11. Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB et al (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301. doi: 10.1063/1.2902483 CrossRefGoogle Scholar
  12. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068. doi: 10.1016/j.ijheatmasstransfer.2011.04.014 CrossRefGoogle Scholar
  13. Indhuja A, Suganthi KS, Manikandan S, Rajan KS (2013) Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature. J Taiwan Inst Chem E 44:474–479. doi: 10.1016/j.jtice.2012.11.015 CrossRefGoogle Scholar
  14. Kale NJ, Allen LV Jr (1989) Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants. Int J Pharm 57:87–93. doi: 10.1016/0378-5173(89)90296-2 CrossRefGoogle Scholar
  15. Kashyout AB, Soliman M, Gamal ME, Fathy M (2005) Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells. Mater Chem Phys 90:230–233. doi: 10.1016/j.matchemphys.2004.11.031 CrossRefGoogle Scholar
  16. Kole M, Dey TK (2011) Effect of aggregation on the viscosity of copper oxide gear oil nanofluids. Int J Therm Sci 50:1741–1747. doi: 10.1016/j.ijthermalsci.2011.03.027 CrossRefGoogle Scholar
  17. Kole M, Dey TK (2012) Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids. Thermochim Acta 535:58–65. doi: 10.1016/j.tca.2012.02.016 CrossRefGoogle Scholar
  18. Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17:35–40Google Scholar
  19. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289. doi: 10.1115/1.2825978 CrossRefGoogle Scholar
  20. Li F, Wu J, Qin Q, Li Z, Huang X (2010) Facile synthesis of γ-MnOOH micro/nanorods and their conversion to β-MnO2, Mn3O4. J Alloy Compd 492:339–346. doi: 10.1016/j.jallcom.2009.11.089 CrossRefGoogle Scholar
  21. Mak VH, Potts RO, Guy RH (1990) Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm Res 7:835–841. doi: 10.1023/A:1015960815578 CrossRefGoogle Scholar
  22. Manikandan S, Karthikeyan N, Silambarasan M, Rajan KS (2012) Sub-micron dispersions of sand in water prepared by stirred bead milling and ultrasonication: a potential coolant. Appl Therm Eng 44:1–10. doi: 10.1016/j.applthermaleng.2012.04.004 CrossRefGoogle Scholar
  23. Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon, OxfordGoogle Scholar
  24. Moosavi M, Elaheh KG, Youssefi A (2010) Fabrication, characterization and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow 31:599–605. doi: 10.1016/j.ijheatfluidflow.2010.01.011 CrossRefGoogle Scholar
  25. Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci 32:397–402. doi: 10.1016/j.expthermflusci.2007.05.001 CrossRefGoogle Scholar
  26. Naresh Y, Dhivya A, Suganthi KS, Rajan KS (2012) High-temperature thermo-physical properties of novel CuO-therminol®55 nanofluids. Nanosci Nanotechnol Lett 4:1209–1213. doi: 10.1166/nnl.2012.1454 CrossRefGoogle Scholar
  27. Ojha U, Das S, Chakraborty S (2010) Stability, pH and viscosity relationships in zinc oxide based nanofluids subject to heating and cooling cycles. J Mater Sci Eng 4:24–29Google Scholar
  28. Phuoc TX, Massoudi M (2009) Experimental observations of the effects of shear Rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids. Int J Therm Sci 48:1294–1301. doi: 10.1016/j.ijthermalsci.2008.11.015 CrossRefGoogle Scholar
  29. Prasher R, Phelan PE, Bhattacharya P (2006a) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluids). Nano Lett 6:1529–1534. doi: 10.1021/nl060992s CrossRefGoogle Scholar
  30. Prasher R, Song D, Wang J, Phelan P (2006b) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108. doi: 10.1063/1.2356113 CrossRefGoogle Scholar
  31. Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16:7920–7930. doi: 10.1021/la991548q CrossRefGoogle Scholar
  32. Rajan KS, Srivastava SN, Pitchumani B, Mohanty B (2006) Simulation of gas–solid heat transfer during pneumatic conveying: Use of multiple gas inlets along the duct. Int J Heat Mass Transf 33:1234–1242. doi: org/10.1016/j.icheatmasstransfer.2006.06.011 CrossRefGoogle Scholar
  33. Rajan KS, Pitchumani B, Srivastava SN, Mohanty B (2007) Two-dimensional simulation of gas–solid heat transfer in pneumatic conveying. Int J Heat Mass Transf 50:967–976. doi: 10.1016/j.ijheatmasstransfer.2006.08.009 CrossRefGoogle Scholar
  34. Rajan KS, Dhasandhan K, Srivastava SN, Pitchumani B (2008) Studies on gas–solid heat transfer during pneumatic conveying. Int J Heat Mass Transf 51:2801–2813. doi: org/10.1016/j.ijheatmasstransfer.2007.09.042 CrossRefGoogle Scholar
  35. Rohini Priya K, Suganthi KS, Rajan KS (2012) Transport properties of ultra-low concentration CuO–water nanofluids containing non-spherical nanoparticles. Int J Heat Mass Transf 55:4734–4743. doi: 10.1016/j.ijheatmasstransfer.2012.04.035 CrossRefGoogle Scholar
  36. Suganthi KS, Rajan KS (2012a) Effect of calcination temperature on the transport properties and colloidal stability of ZnO–water nanofluids. Asian J Sci Res 5:207–217. doi: 10.3923/ajsr.2012.207.217 CrossRefGoogle Scholar
  37. Suganthi KS, Rajan KS (2012b) Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf 55:7969–7980. doi: 10.1016/j.ijheatmasstransfer.2012.08.032 CrossRefGoogle Scholar
  38. Suganthi KS, Parthasarathy M, Rajan KS (2013) Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chem Phys Lett 561–562:120–124. doi: 10.1016/j.cplett.2013.01.044 CrossRefGoogle Scholar
  39. Tan TK, Khiew PS, Chiu WS, Radiman S, Abd-Shukor R, Huang NM, Lim HN (2011) Photodegradation of phenol red in the presence of ZnO nanoparticles. World Acad Sci Eng Technol 55:791–796Google Scholar
  40. Tan Y, Song Y, Zheng Q (2012) Hydrogen bonding-driven rheological modulation of chemically reduced graphene oxide/poly(vinyl alcohol) suspensions and its application in electrospinning. Nanoscale 4:6997–7005. doi: 10.1039/c2nr32160b CrossRefGoogle Scholar
  41. The Dow chemical company (1995-2013) Heat transfer fluids. http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm
  42. Tseng SR, Meng HF, Yeh CH, Lai HC, Horng SF, Liao HH et al (2008) High-efficiency blue multilayer polymer light-emitting diode fabricated by a general liquid buffer method. Synthetic Metals 158:130–134. doi: 10.1016/j.synthmet.2007.12.016 CrossRefGoogle Scholar
  43. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188. doi: 10.1016/j.ijheatmasstransfer.2004.07.012 CrossRefGoogle Scholar
  44. White SB, Shih AJM, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:346. doi: 10.1186/1556-276X-6-346 CrossRefGoogle Scholar
  45. Xuan YM, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. ASME J Heat Transf 125:151–155. doi: 10.1115/1.1532008 CrossRefGoogle Scholar
  46. Yu W, Xie H (20122) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012: 43587. doi: 10.1155/2012/435873
  47. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. doi: 10.1007/s11051-006-9150-1 CrossRefGoogle Scholar
  48. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108. doi: 10.1002/adma.200803827 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kuppusamy Swaminathan Suganthi
    • 1
  • Natarajan Anusha
    • 2
  • Kalpoondi Sekar Rajan
    • 1
  1. 1.Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & BiotechnologySASTRA UniversityThanjavurIndia
  2. 2.School of Chemical & BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations