Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G

  • Fabrizio Ruggieri
  • Daniela Di Camillo
  • Livia Maccarone
  • Sandro Santucci
  • Luca Lozzi
Research Paper


Titanium dioxide (TiO2), thanks to its interesting properties as non-toxicity, low cost and high chemical stability, has been extensively investigated for several applications in which, following light absorption, the generated charges can be usefully applied, as for photovoltaic systems and photocatalytic devices. However, due to the wide intrinsic energy gap of TiO2 (between 3.0 and 3.2 eV, depending on the crystalline structure), only a small fraction of the solar spectrum can be used to promote the electron–hole pair formation. In order to reduce the energy gap and, therefore, increase the fraction of the solar spectrum that can be absorbed, different approaches have been used, mainly by doping TiO2 with metals or anions. In this work we will present our results on the deposition, by means of the electrospinning technique, of TiO2 nanofibres doped with metals (iron, copper and tungsten). These nanofibres exhibit morphology at bundle structure composed by sheaths of about 300-nm diameter and core filled with 20-nm-thick fibrils. Metal-doped TiO2 nanofibres have been characterized by SEM, TEM, EDX, XPS and XRD for morphological, chemical and structural analyses, respectively. The effect of the metal concentration on the photocatalytic properties of these nanofibres have been investigated through the study of the degradation of a pollutant model (rhodamine 6G) by using visible lamp and sunlight as light source.


Electrospun nanofibres TiO2 nanofibres Photocatalysis for water decontamination Rhodamine 6G degradation 



This work has been supported by EU FP7 project ‘NATIOMEM’, contract no. 245513.


  1. Alexandrescu R, Morjan I, Scarisoreanu M, Birjega R, Popovici E, Soare I, Gavril-Florescu L, Voicu I, Sandu I, Dumitrache F, Prodan G, Vasile E, Figgemeier E (2007) Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films 515:8438–8445CrossRefGoogle Scholar
  2. Beydoun D, Amal R, Low G, McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1:439–458CrossRefGoogle Scholar
  3. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2001) Photocatalytic degradation for environmental applications: a review. J Chem Technol Biotechnol 77:102–116CrossRefGoogle Scholar
  4. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72CrossRefGoogle Scholar
  5. Carvalho HWP, Batista APL, Hammer P, Ramalho TC (2010) Photocatalytic degradation of methylene blue by TiO2–Cu thin films: theoretical and experimental study. J Hazard Mater 184:273–280CrossRefGoogle Scholar
  6. Chen D, Ray AK (1998) Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Res 32:3223–3234CrossRefGoogle Scholar
  7. Chen H, Nambu A, Wen W, Graciani J, Zhong Z, Hanson JC, Fujita E, Rodriguez JA (2007) Reaction of NH3 with titania: N-doping of the oxide and TiN formation. J Phys Chem C 111:1366–1372CrossRefGoogle Scholar
  8. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219CrossRefGoogle Scholar
  9. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  10. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces 1:1140–1143CrossRefGoogle Scholar
  11. Ding B, Kim CK, Kim HY, Seo MK, Park SJ (2004) Titanium dioxide nanofibers prepared by using electrospinning method. Fibers Polym 5:105–109CrossRefGoogle Scholar
  12. Fujishima A, Hashimoto K, Watanabe T (1999) Photocatalysis: fundamentals and applications. BKC Inc., TokyoGoogle Scholar
  13. Habibi MH, Tangestaninejad S, Yadollahi B (2001) Photocatalytic mineralization of mercaptans as environmental pollutants in aquatic systems using TiO2 suspensions. Appl Catal B Environ 33:57–63CrossRefGoogle Scholar
  14. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A 359:25–40CrossRefGoogle Scholar
  15. He J, Luo Q, Cai QZ, Li XW, Zhang DQ (2011) Microstructure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation. Mater Chem Phys 129:242–248CrossRefGoogle Scholar
  16. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–95CrossRefGoogle Scholar
  17. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6:2009–2013CrossRefGoogle Scholar
  18. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14CrossRefGoogle Scholar
  19. Lakshmia S, Renganathan R, Fujita S (1995) Study on TiO2-mediated photocatalytic degradation of methylene blue. J Photochem Photobiol A 88:163–167CrossRefGoogle Scholar
  20. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  21. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560CrossRefGoogle Scholar
  22. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  23. López R, Gómez R, Llanos ME (2009) Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catal Today 148:103–108CrossRefGoogle Scholar
  24. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ Jr (2004) Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater 69:77–83CrossRefGoogle Scholar
  25. Nahar Mst S, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65:1976–1982CrossRefGoogle Scholar
  26. Navio JA, Colon G, Litter MI, Bianco GN (1996) Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate. J Mol Catal A 106:267–276CrossRefGoogle Scholar
  27. Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27CrossRefGoogle Scholar
  28. Ruggieri F, D’Archivio AA, Fanelli M, Santucci S (2001) Photocatalytic degradation of linuron in aqueous suspensions of TiO2. RSC Adv 1:611–618CrossRefGoogle Scholar
  29. Serpone N, Khairutdinov RF (1997) Application of nanoparticles in the photocatalytic degradation of water pollutants. Stud Surf Sci Catal 103:417–444CrossRefGoogle Scholar
  30. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654CrossRefGoogle Scholar
  31. Subramanian V, Pangarkar VG, Beenackers AACM (2000) Photocatalytic degradation of PHBA: relationship between substrate adsorption and photocatalytic degradation. Clean Prod Process 2:149–156CrossRefGoogle Scholar
  32. Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155:572–579CrossRefGoogle Scholar
  33. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRefGoogle Scholar
  34. Wang S, Lian JS, Zheng WT, Jiang Q (2012) Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Appl Surf Sci 263:260–265CrossRefGoogle Scholar
  35. Wu Y, Zhang J, Xiao L, Chen F (2008) Preparation and characterization of TiO2 photocatalyst by Fe3+ doping together Au deposition for the degradation of organic pollutants. Appl Catal B 88:525–532Google Scholar
  36. Yang Y, Zhang C, Xu Y, Wang H, Li X, Wang C (2010) Electrospun Er:TiO2 nanofibrous films as efficient photocatalysts under solar simulated light. Mater Lett 64:147–150CrossRefGoogle Scholar
  37. Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278CrossRefGoogle Scholar
  38. Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys. 93:159–163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fabrizio Ruggieri
    • 1
  • Daniela Di Camillo
    • 1
  • Livia Maccarone
    • 1
  • Sandro Santucci
    • 2
  • Luca Lozzi
    • 2
  1. 1.Dipartimento di Scienze Fisiche e ChimicheUniversità degli studi di L’AquilaL’AquilaItaly
  2. 2.Dipartimento di Scienze Fisiche e Chimiche e CNISMUniversità degli studi di L’AquilaL’AquilaItaly

Personalised recommendations