Advertisement

First-principles study of hydrogen storage on Li-decorated silicene

  • Feng Li
  • Chang-wen Zhang
  • Hang-xing Luan
  • Pei-ji Wang
Research Paper

Abstract

Motivated by experimental developments on silicene, we perform first-principles density functional study on the possibility of hydrogen storage on the Li-decorated silicene. The calculated Li-binding energy on silicene is significantly higher than the Li bulk’s cohesive energy, ruling out any possibility of cluster formations in the Li-doped silicene, which facilitate the reversible hydrogen adsorption and desorption. For one Li atom adsorbing on silicene, each Li could adsorb up to five hydrogen molecules. By adsorbing Li atoms on both sides of silicene, the hydrogen capacity can reach as high as 6.35 wt%, and the average binding energy of H2 molecules falls within the range of 0.32–0.17 eV, which is favorable for developing high-capacity hydrogen storage at room temperature. These findings may provide a potential avenue to design new hydrogen storage materials in silicene-based nanoelectronics.

Keywords

First-principles calculations Hydrogen storage Silicene 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61076088 and 11274143), and Technological Development Program in Shandong Province Education Department (Grant No. J10LA16).

References

  1. Ataca C, Akturk E, Ciraci S (2009) Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Phys Rev B 79:041406CrossRefGoogle Scholar
  2. Bhatia S, Myers A (2006) Optimum conditions for adsorptive storage. Langmuir 22:1688CrossRefGoogle Scholar
  3. Cabria I, López MJ, Alonso JA (2008) Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping. J Chem Phys 128:144704CrossRefGoogle Scholar
  4. Cahangirov S, Topsakal M, Aktu¨rk E, Sahin H, Ciraci S (2009) Two-and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804CrossRefGoogle Scholar
  5. Cha J, Lim S, Choi CH, Cha MH, Park N (2009) Inaccuracy of density functional theory calculations for dihydrogen binding energetics onto Ca cation centers. Phys Rev Lett 103:216102CrossRefGoogle Scholar
  6. Chen L, Liu CC, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K (2012) Evidence for Dirac Fermions in a honeycomb lattice based on silicon. Phys Rev Lett 109:056804CrossRefGoogle Scholar
  7. Ezawa M (2012) Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 109:055502CrossRefGoogle Scholar
  8. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett 12:3507–3511CrossRefGoogle Scholar
  9. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Phys Rev Lett 108:245501CrossRefGoogle Scholar
  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191CrossRefGoogle Scholar
  11. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787CrossRefGoogle Scholar
  12. Guzmán-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131CrossRefGoogle Scholar
  13. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354CrossRefGoogle Scholar
  14. Hu M, Zhang X, Poulikakos D (2013) Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 87:195417CrossRefGoogle Scholar
  15. Kim G, Jhi SH, Park N, Louie SG, Cohen ML (2008) Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys Rev B 78:085408CrossRefGoogle Scholar
  16. Kresse G, Furthmuller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11196CrossRefGoogle Scholar
  17. Kresse G, Furthmuller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15CrossRefGoogle Scholar
  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758CrossRefGoogle Scholar
  19. Lebe`gue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:115409CrossRefGoogle Scholar
  20. Lee H, Ihm J, Cohen ML, Louie SG (2009) Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations. Phys Rev B 80:115412CrossRefGoogle Scholar
  21. Lin CL, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M (2012) Structure of silicene grown on Ag (111). Appl Phys Express 5:045802CrossRefGoogle Scholar
  22. Liu CS, Zeng Z (2010) Boron-tuned bonding mechanism of Li-graphene complex for reversible hydrogen storage. Appl Phys Lett 96:123101CrossRefGoogle Scholar
  23. Liu CC, Jiang H, Yao Y (2011a) Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B 84:195430CrossRefGoogle Scholar
  24. Liu CC, Feng W, Yao Y (2011b) Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802CrossRefGoogle Scholar
  25. Lochan R, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357CrossRefGoogle Scholar
  26. Morishita T, Nishio K, Mikami M (2008) Formation of single-and double-layer silicon in slit pores. Phys Rev B 77:081401CrossRefGoogle Scholar
  27. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  28. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Twodimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRefGoogle Scholar
  29. Osborn TH, Farajian AA (2012) Stability of Lithiated Silicene from First Principles. J Phys Chem C 116:22916CrossRefGoogle Scholar
  30. Park N, Hong S, Kim G, Jhi SH (2007) Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J Am Chem Soc 129:8999CrossRefGoogle Scholar
  31. Perdew JP et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  32. Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z, Lu J (2012) Tunable and sizable band gap in silicene by surface adsorption. Sci Rep 2:853CrossRefGoogle Scholar
  33. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453CrossRefGoogle Scholar
  34. Shevlin SA, Guo ZX (2009) Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials. Chem Soc Rev 38:211CrossRefGoogle Scholar
  35. Spencer MJS, Morishita T, Snook IK (2012) Reconstruction and electronic properties of silicon nanosheets as a function of thickness. Nanoscale 4:2906CrossRefGoogle Scholar
  36. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501CrossRefGoogle Scholar
  37. Yang X, Ni J (2005) Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Phys Rev B 72:195426CrossRefGoogle Scholar
  38. Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175501CrossRefGoogle Scholar
  39. Yoon M, Yang S, Wang E, Zhang Z (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7:2578CrossRefGoogle Scholar
  40. Zhang CW, Yan SS (2012) First-Principles Study of Ferromagnetism in Two-Dimensional Silicene with Hydrogenation. J Phys Chem C 116:4163CrossRefGoogle Scholar
  41. Zheng FB, Zhang CW (2012) The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res Lett 7:422CrossRefGoogle Scholar
  42. Zhou Z, Zhao J, Gao X, Chen Z, Yan J, Schleyer PR, Morinaga M (2005) Do Composite Single-Walled Nanotubes Have Enhanced Capability for Lithium Storage. Chem Mater 17:992CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Feng Li
    • 1
  • Chang-wen Zhang
    • 1
  • Hang-xing Luan
    • 1
  • Pei-ji Wang
    • 1
  1. 1.School of Physics and TechnologyUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations