Journal of Nanoparticle Research

, 15:1940 | Cite as

Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

  • Lin Qin
  • Donglei Wei
  • Yanlin Huang
  • Sun Il Kim
  • Young Moon Yu
  • Hyo Jin Seo
Research Paper


A novel red-emitting nano-phosphor of Eu3+-doped Gd6MoO12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5D07F2 of Eu3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd6MoO12:Eu3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips.


Nano-particles Molybdate Phosphor Luminescence 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013-R1A1A2009154) and by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. Banski M, Afzaal M, Podhorodecki A, Misiewicz J, Abdelhady AL, O’Brien P (2012) Passivation of lanthanide surface sites in sub-10 nm NaYF4:Eu3+ nanocrystals. J Nanopart Res 14:1228–1237CrossRefGoogle Scholar
  2. Chang YC, Liang CH, Yan SA, Chang YS (2010) Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors. J Phys Chem C 114:3645–3652CrossRefGoogle Scholar
  3. Chiu YC, Liu WR, Chang CK, Liao CC, Yeh YT, Jang SM, Chen TM (2010) Ca2PO4Cl:Eu2+: an intense near-ultraviolet converting blue phosphor for white light-emitting diodes. J Mater Chem 20:1755–1758CrossRefGoogle Scholar
  4. Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M (2008) Synthesis, EXAFS investigation and optical spectroscopy of nanocrystalline Gd3Ga5O12 doped with Ln3+ ions (Ln = Eu, Pr). Opt Mater 30:1162–1167CrossRefGoogle Scholar
  5. Dordevic V, Nikolic MG, Bartova B, Krsmanovic RM, Antic Z, Dramicanin MD (2012) Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure. J Nanopart Res 15:1322–1326CrossRefGoogle Scholar
  6. Dutta PS, Khanna A (2013) Eu3+ Activated Molybdate and tungstate based red phosphors with charge transfer band in blue region. ECS J Solid State Sci Technol 2:R3153–R3167CrossRefGoogle Scholar
  7. Escolastico S, Vert VB, Serra JM (2009) Preparation and characterization of nanocrystalline mixed proton-electronic conducting materials based on the system Ln6WO12. Chem Mater 21:3079–3089CrossRefGoogle Scholar
  8. Fang YC, Chu SY, Kao PC, Chuang YM, Zeng ZL (2011) Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors. J Electrochem Soc 158:J1–J5CrossRefGoogle Scholar
  9. Fournier J, Fournier J, Kohlmuller R (1970) Etude des systemes La2O3-MoO3, Y2O3-MoO3, et des phases Ln6MoO12. Bull Soc Chim Fr 12:4277–4283Google Scholar
  10. Galceran M, Pujol MC, Aguilo M, Dıaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol–Gel Sci Technol 42:79–88CrossRefGoogle Scholar
  11. George G, Vishnu VS, Reddy MLP (2011) The synthesis, characterization and optical properties of silicon and praseodymium doped Y6MoO12 compounds: environmentally benign inorganic pigments with high NIR reflectance. Dyes Pigm 88:109–115CrossRefGoogle Scholar
  12. Haranath D, Chander H, Sharma P, Singh S (2006) Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes. Appl Phys Lett 89:173118–173120CrossRefGoogle Scholar
  13. Huang CH, Kuo TK, Chen TM (2011a) Thermally stable green Ba3Y(PO4)3:Ce3+, Tb3+ and red Ca3Y(AlO)3(BO3)4:Eu3+ phosphors for white-light fluorescent lamps. Opt Express 19:A1–A6CrossRefGoogle Scholar
  14. Huang YL, Nakai Y, Tsuboi T, Seo HJ (2011b) The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R = Gd, Y) for solid state lighting applications. Opt Express 19:6303–6311CrossRefGoogle Scholar
  15. Jia CG, Sun LD, Yan ZG, Pang YC, Lü SZ, Yan CH (2010) Monazite and zircon type LaVO4:Eu nanocrystals: synthesis, luminescent properties, and spectroscopic identification of the Eu3+ sites. Eur J Inorg Chem 2626–2635Google Scholar
  16. Jia LP, Yan B, Zhang Q (2013) Barium rare earth fluoride nanocrystals: high temperature solution synthesis, characterization and luminescence. J Nanopart Res 15:1540–1549CrossRefGoogle Scholar
  17. Jiao HY, Wang YH (2012) A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes. Phys B 407:2729–2733CrossRefGoogle Scholar
  18. Kato A, Oishi S, Shishido T, Yamazaki M, Iida S (2005) Evaluation of stoichiometric rare-earth molybdate and tungstate compounds as laser materials. J Phys Chem Solids 66:2079–2081CrossRefGoogle Scholar
  19. Kong DY, Fan Y, Zhang CM, Lin J (2010) Mesoporous silica-coated NaYF4:Yb3+, Er3+ particles for drug release. J Nanopart Res 12:663–673CrossRefGoogle Scholar
  20. Lei F, Yan B (2008) Hydrothermal synthesis and luminescence of CaMO4:RE 3+ (M = W, Mo; RE = Eu, Tb) submicro-phosphors. J Solid State Chem 181:855–862CrossRefGoogle Scholar
  21. Lei F, Yan B (2009) Molten salt synthesis, characterization, and luminescence properties of Gd2MO6:Eu3+ (M = W, Mo) Phosphors. J Am Ceram Soc 92:1262–1267CrossRefGoogle Scholar
  22. Lei JL, Yu Y, Li LJ, Cheng SB, Li GY, Li NB (2012) Synthesis of LiEu1−xBix(MoO4)2 red phosphors by sol–gel method and their luminescent properties. J Rare Earths 30:330–334CrossRefGoogle Scholar
  23. Li X, Yang ZP, Guan L, Liu C, Li PL (2008) Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method. J Cryst Growth 310:3117–3120CrossRefGoogle Scholar
  24. Li X, Guan L, Li X, Wen J, Yang ZP (2010) Luminescent properties of NaBaPO4:Eu3+ red-emitting phosphor for white light-emitting diodes. Powder Technol 200:12–15CrossRefGoogle Scholar
  25. Li X, Guan L, Sun MS, Liu HY, Yang ZP, Guo QL, Fu GS (2011) Luminescent properties of Dy3+ doped SrMoO4 phosphor. J Lumin 131:1022–1025CrossRefGoogle Scholar
  26. Liao JS, You HY, Zhou D, Wen HR, Hong RJ (2012) Sol–gel preparation and photoluminescence properties of LiLa(MoO4)2:Eu3+ phosphors. Opt Mater 34:1468–1472CrossRefGoogle Scholar
  27. Liu GX, Li X, Dong XT, Wang JX (2011) Architectures of YF3:Eu3+ solid and hollow sub-microspheres: a facile arginine-assisted hydrothermal synthesis and luminescence properties. J Nanopart Res 13:4025–4034CrossRefGoogle Scholar
  28. Magraso A, Frontera C, Marrero-Lopez D, Nunez P (2009) New crystal structure and characterization of lanthanum tungstate “La6WO12” prepared by freeze-drying synthesis. Dalton Trans 46:10273–10283CrossRefGoogle Scholar
  29. Mueller AH, Petruska MA, Achermann M, Werder DJ, Akhadov EA, Koleske DD, Hoffbauer MA, Kilmov VI (2005) Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett 5:1039–1044CrossRefGoogle Scholar
  30. Mukherjee S, Dimple PD, Manoj N, Tyagi AK (2012) Sonochemically synthesized rare earth double-doped zirconia nanoparticles: probable candidate for white light emission. J Nanopart Res 14:814–823CrossRefGoogle Scholar
  31. Neeraj S, Kijima N, Cheetham AK (2004) Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+: (M = Gd, Y, Bi). Chem Phys Lett 387:1–3CrossRefGoogle Scholar
  32. Park S, Vogt T (2010) Near UV excited line and broad band photoluminescence of an anion-ordered oxyfluoride. J Am Chem Soc 132:4516–4517CrossRefGoogle Scholar
  33. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182CrossRefGoogle Scholar
  34. Reddy KR, Annapurna K, Buddhudu S (1996) Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors. Mater Res Bull 31:1355–1359CrossRefGoogle Scholar
  35. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751CrossRefGoogle Scholar
  36. Shigeo S, William M (1998) Phosphor Handbook. CRC Press, WashingtonGoogle Scholar
  37. Sun JY, Xue B, Du HY (2013) Synthesis and luminescence properties of Gd6MoO12:Yb3+, Er3+ phosphor with enhanced photoluminescence by Li+ doping. Infrared Phys Technol 60:10–14CrossRefGoogle Scholar
  38. Tian Y, Chen BJ, Hua RN, Yu NS, Liu BQ, Sun JS, Cheng LH, Zhong HY, Li XP, Zhang JS, Tian BN, Zhong H (2012) Self-assembled 3D flower-shaped NaY(WO4)2: Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties. CrystEngComm 14:1760–1769CrossRefGoogle Scholar
  39. Tian BN, Chen BJ, Tian Yue, Li XP, Zhang JS, Sun JS, Zhong HY, Cheng LH, Fu SB, Zhong H, Wang YZ, Zhang XQ, Xia HP, Hua RN (2013) Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphor. J Mater Chem C 1:2338–2344CrossRefGoogle Scholar
  40. Tomaszewicz E, Da-browska G (2010) New cadmium and rare-earth metal molybdates–tungstates with scheelite-type structure. J Therm Anal Calorim 101:417–422CrossRefGoogle Scholar
  41. Wang H, Medina FD, Zhou YD, Zhang QN (1992) Temperature de-pendence of the polarized Raman spectra of ZnWO4 singlecrystals. Phys Rev B 45:10356–10362CrossRefGoogle Scholar
  42. Wang ZL, Liang HB, Gong ML, Su Q (2008) The red phosphor NaEu(MoO4)2 prepared by the combustion method. Mater Lett 62:619–622CrossRefGoogle Scholar
  43. Wang WX, Yang PP, Gai SL, Niu N, He F, Lin J (2010) Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals. J Nanopart Res 12:2295–2305CrossRefGoogle Scholar
  44. Yanes AC, del-Castillo J, Mendez-Ramos J, Rodrıguez VD (2011) Sol-gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter. J Nanopart Res 13:7295–7301CrossRefGoogle Scholar
  45. Yang HM, Shi JX, Gong ML (2005) A novel red emitting phosphor Ca2SnO4: Eu3+. J Solid State Chem 178:917–920CrossRefGoogle Scholar
  46. Yang YL, Li XM, Feng WL, Yang WJ, Li WL, Tao CY (2011) Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors. J Alloys Compd 509:845–848CrossRefGoogle Scholar
  47. Yoshimura M, Ma J, Kakihana M (1998) Low-temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method. J Am Ceram Soc 81:2721–2724CrossRefGoogle Scholar
  48. Zairov R, Mustafina A, Shamsutdinova N, Rümmeli MH, Amirov R, Burilov V, Pinus M, Morozov V, Ivanov V, Gogolashvili E, Tatarinov D, Mironov V, Konovalov A (2012) The effect of the core morphology of Eu(III)-doped nanoparticles on the ion exchange versus energy transfer between Eu(III) in the core and Cu(II) ions at the interface. J Nanopart Res 14:1018–1031CrossRefGoogle Scholar
  49. Zhu R, Huang YL, Seob HJ (2010) A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes. J Electrochem Soc 157:H1116–H1120CrossRefGoogle Scholar
  50. Zolotova ES, Rakhmanova MI, Sokolov VV, Uskov EM (2011) Influence of bismuth and calcium on the luminescence intensity of NaY1−xEux(MoO4)2 phosphors. Inorg Mater 47:1249–1252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lin Qin
    • 1
  • Donglei Wei
    • 2
  • Yanlin Huang
    • 1
  • Sun Il Kim
    • 2
  • Young Moon Yu
    • 3
  • Hyo Jin Seo
    • 2
  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Department of Physics and Interdisciplinary Program of Biomedical EngineeringPukyong National UniversityBusanRepublic of Korea
  3. 3.LED-Marin Convergence Technology R&BD CenterPukyong National UniversityBusanRepublic of Korea

Personalised recommendations