Polyinosinic:polycytidylic acid loading onto different generations of PAMAM dendrimer-coated magnetic nanoparticles

Research Paper


Poly (I:C), which is a synthetic double-stranded RNA, have significant toxicity on tumor cells. The immobilization of Poly (I:C) onto nanoparticles is important for the fabrication of targeted delivery systems. In this study, different generations of newly synthesized PAMAM dendron-coated magnetic nanoparticles (DcMNP) which can be targeted to the tumor site under magnetic field were efficiently loaded for the first time with Poly (I:C). Different generations of DcMNPs (G2, G3, G4, G5, G6, and G7) were synthesized. Poly (I:C) activation was achieved in the presence of EDC and 1-methylimidazole. Loading of Poly (I:C) onto DcMNPs was followed by agarose gel electrophoresis. Acidic reaction conditions were found as superior to basic and neutral for binding of Poly (I:C). In addition, having more functional groups at the surface, higher generations (G7, G6, and G5) of PAMAM DcMNPs were found more suitable as a delivery system for Poly (I:C). Further in vitro and in vivo analyses of Poly (I:C)/PAMAM magnetic nanoparticles may provide new opportunities for the selective targeting and killing of tumor cells.


Poly (I:C) Magnetic nanoparticles Targeted delivery system Cancer therapy 



This study was supported by TÜBİTAK (TBAG-109T949 and TBAG-2215), and Middle East Technical University (BAP-07-02-2010-06).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2008) Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 8:1773–1780CrossRefGoogle Scholar
  2. Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties and applications. Chem Rev 99:1665–1688CrossRefGoogle Scholar
  3. Butowski N, Lamborn KR, Lee BL, Prados MD, Cloughesy T, DeAngelis LM, Abrey L, Fink K, Lieberman F, Mehta M, Ian Robins H, Junck L, Salazar AM, Chang SM (2009) A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J Neurooncol 91:183–189CrossRefGoogle Scholar
  4. Chen L, Ding Y, Wang Y, Liu X, Babu R, Ravis W, Yan W (2013) Codelivery of zoledronic acid and doublestranded RNA from core–shell nanoparticles. Int J Nanomed 8:137–145Google Scholar
  5. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRefGoogle Scholar
  6. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60CrossRefGoogle Scholar
  7. Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11:362–371Google Scholar
  8. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436CrossRefGoogle Scholar
  9. Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, Gander B (2009) Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target 17:652–661CrossRefGoogle Scholar
  10. Friedman OM, Klass DL, Seligman AM (1954) N-phosphorylated derivatives of diethanolamine1. J Am Chem Soc 76:916–917CrossRefGoogle Scholar
  11. Gao F, Pan BF, Zheng WM, Ao LM, Gu HC (2005) Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles. J Magn Magn Mater 293:48–54CrossRefGoogle Scholar
  12. Gomori G (1948, December) Histochemical demonstration of sites of phosphamidase activity. In Proceedings of the society for experimental biology and medicine, Vol. 69, No. 3. Society for Experimental Biology and Medicine, Royal Society of Medicine, New York, p 407–409Google Scholar
  13. Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25:1085–1087CrossRefGoogle Scholar
  14. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745CrossRefGoogle Scholar
  15. Ho KM, Li P (2008) Design and synthesis of novel magnetic core-shell polymeric particles. Langmuir 24:1801–1807CrossRefGoogle Scholar
  16. Jasani B, Navabi H, Adams M (2009) Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 27:3401–3404CrossRefGoogle Scholar
  17. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105CrossRefGoogle Scholar
  18. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384CrossRefGoogle Scholar
  19. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988CrossRefGoogle Scholar
  20. Khodadust R, Ünsoy G, Yalçın S, Gündüz G, Gündüz U (2013) PAMAM dendrimer-coated iron oxide nanoparticles:synthesis and characterization of different generations. J Nanopart Res 15:1488–1501CrossRefGoogle Scholar
  21. Khvalevsky E, Rivkin L, Rachmilewitz J, Galun E, Giladi H (2007) TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. J Cell Biochem 100:1301–1312CrossRefGoogle Scholar
  22. Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126:7206–7211CrossRefGoogle Scholar
  23. Kumar H, Kawai T, Kato H, Sato S, Takahashi K, Coban C, Yamamoto M, Uematsu S, Ishii KJ, Takeuchi O, Akira S (2006) Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 203:1795–1803CrossRefGoogle Scholar
  24. Liu Y, Bryantsev VS, Diallo MS, Goddard WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799CrossRefGoogle Scholar
  25. Ludeman SM (1999) The chemistry of the metabolites of cyclophosphamide. Curr Pharm Des 5:627–644Google Scholar
  26. Maiti PK, Çağın T, Lin ST, Goddard WA (2005) Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38:979–991CrossRefGoogle Scholar
  27. Matsumoto M, Funami K, Oshiumi H, Seya T (2004) Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. Microbiol Immunol 48:147–154Google Scholar
  28. McBain SC, Yiu HHP, Haj AE, Dobson J (2007) Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem 17:2561–2565CrossRefGoogle Scholar
  29. Meyer J, Weinmann JP (1957) Occurrence of phosphamidase activity in keratinizing epithelia1. J Investig Dermatol 29:393–405Google Scholar
  30. Milhaud PG, Machy P, Lebleu B, Leserman L (1989) Antibody targeted liposomes containing poly(rI).poly(rC) exert a specific antiviral and toxic effect on cells primed with interferons alpha/beta or gamma. Biochim Biophys Acta 987:15–20CrossRefGoogle Scholar
  31. Milhaud PG, Compagnon B, Bienvenue A, Philippot JR (1992) Interferon production of 1929 and hela cells, enhanced by polyriboinosinic acid-polyribocytidylic acid pH-sensitive liposomes. Bioconjug Chem 3:402–407CrossRefGoogle Scholar
  32. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRefGoogle Scholar
  33. Okada H (2009) Brain tumor immunotherapy with type-1 polarizing strategies. Ann NY Acad Sci 1174:18–23CrossRefGoogle Scholar
  34. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67:8156–8163CrossRefGoogle Scholar
  35. Patri AK, István JM, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471CrossRefGoogle Scholar
  36. Salaun B, Greutert M, Romero P (2009) Toll-like receptor 3 is necessary for dsRNA adjuvant effects. Vaccine 27:1841–1847CrossRefGoogle Scholar
  37. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ (2006) The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8 + T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24:5119–5132CrossRefGoogle Scholar
  38. Salvador A, Igartua M, Hernandez RM, Pedraz JL (2012) Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines. Vaccine 30:589–596CrossRefGoogle Scholar
  39. Sanz V, Conde J, Hernandez Y, Baptista PV, Ibarra MR, Fuente JM (2012) Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles. J Nanopart Res 14:917–925CrossRefGoogle Scholar
  40. Schaffert D, Kiss M, Rödl W, Shir A, Levitzki A, Ogris M, Wagner E (2011) Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharm Res 28:731–741CrossRefGoogle Scholar
  41. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26:1626–1637CrossRefGoogle Scholar
  42. Schulz O, Diebold SS, Chen M, Näslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljeström P, Reis e Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892CrossRefGoogle Scholar
  43. Seib FP, Jones AT, Duncan R (2007) Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J Control Release 117:291–300CrossRefGoogle Scholar
  44. Sheehan J, Cruickshank P, Boshart G (1961) A convenient synthesis of water-soluble carbodiimides. J Org Chem 26:2525CrossRefGoogle Scholar
  45. Shen T, Weissleder R, Papisov M, Bogdanov A, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29:599–604CrossRefGoogle Scholar
  46. Shir A, Ogris M, Wagner E, Levitzki A (2006) EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 3(1):e6CrossRefGoogle Scholar
  47. Shukoor MI, Natalio F, Ksenofontov V, Tahir MN, Eberhardt M, Theato P, Schröder HC, Müller WE, Tremel W (2007) Double-stranded RNA polyinosinic-polycytidylic acid immobilized onto gamma-Fe2O3 nanoparticles by using a multifunctional polymeric linker. Small 3:1374–1378CrossRefGoogle Scholar
  48. Shukoor MI, Natalio F, Metz N, Glube N, Tahir MN, Therese HA, Ksenofontov V, Theato P, Langguth P, Boissel JP, Schröder HC, Müller WE, Tremel W (2008) dsRNA-functionalized multifunctional gamma-Fe2O3 nanocrystals: a tool for targeting cell surface receptors. Angew Chem Int Ed Engl 47:4748–4752CrossRefGoogle Scholar
  49. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefGoogle Scholar
  50. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 57:2106–2129CrossRefGoogle Scholar
  51. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101:3516–3521CrossRefGoogle Scholar
  52. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376CrossRefGoogle Scholar
  53. Tincer G, Yerlikaya S, Yagci FC, Kahraman T, Atanur OM, Erbatur O, Gursel I (2011) Immunostimulatory activity of polysaccharide-poly(I:C) nanoparticles. Biomaterials 32:4275–4282CrossRefGoogle Scholar
  54. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466–2468CrossRefGoogle Scholar
  55. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964–977CrossRefGoogle Scholar
  56. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRefGoogle Scholar
  57. Weber A, Kirejczyk Z, Besch R, Potthoff S, Leverkus M, Häcker G (2010) Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ 17:942–951CrossRefGoogle Scholar
  58. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165CrossRefGoogle Scholar
  59. Widder KJ, Senyei AE, Ranney DF (1979) Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother 16:213–271CrossRefGoogle Scholar
  60. Xiangzhong Z, Miao A, Yuqi G, Xianbin Z, Li W, Xia L, Chengfang Y (2012) Poly I:C-ınduced tumor cell apoptosis mediated by pattern-recognition receptors. Cancer Biother Radiopharm 27:530–534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiotechnologyMiddle East Technical UniversityAnkaraTurkey
  2. 2.Central Laboratory, Molecular Biology and Biotechnology R&D CenterMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of Food EngineeringAhi Evran UniversityKırşehirTurkey
  4. 4.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations