Advertisement

Click chemistry on the surface of PLGA-b-PEG polymeric nanoparticles: a novel targetable fluorescent imaging nanocarrier

  • Andrea Pucci
  • Erica Locatelli
  • Jessica Ponti
  • Chiara Uboldi
  • Valerio Molinari
  • Mauro Comes Franchini
Brief Communication

Abstract

In the quest for biocompatible nanocarriers for biomedical applications, a great deal of effort is put on engineering the nanocomposites surface in order to render them specific to the particular purpose. We developed biocompatible PLGA-b-PEG-based nanoparticles carrying a double functionality (i.e., carboxylic and acetylenic) able to serve as flexible highly selective grafting centers for cancer diagnosis and treatment. As a proof of concept, the nanocarrier was successfully functionalized with a tailored fluorescent molecule by means of click chemistry and with a targeting agent specific for glioblastoma multiforme via amidic bond formation.

Keywords

Click Fluorescein Functionalized polymers Nanochemistry Glioblastoma 

Notes

Acknowledgments

The work was partly supported with the funds of SaveMe EU-FP7 project no. CP-IP 263307-2.

Supplementary material

11051_2013_1818_MOESM1_ESM.doc (72 kb)
Supplementary material 1 (DOC 72 kb)

References

  1. Agarwal A, Tripathi PK, Tripathi S, Jain NK (2008) Fluorescence imaging: applications in drug delivery research. Curr Drug Targets 9:895–898CrossRefGoogle Scholar
  2. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876CrossRefGoogle Scholar
  3. Comes Franchini M, Bonini BF, Camaggi CM, Gentili D, Pession A, Rani M, Strocchi E (2010) Design and synthesis of novel 3,4-disubstituted pyrazoles for nanomedicine applications against malignant gliomas. Eur J Med Chem 45(5):2024–2033Google Scholar
  4. Gentili D, Ori G, Comes Franchini M (2009) Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. Chem Commun 39:5874–5876CrossRefGoogle Scholar
  5. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties and nanomedical applications as drug delivery system. PNAS 105:2586–2591CrossRefGoogle Scholar
  6. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Elsevier, LondonGoogle Scholar
  7. Huisgen R (1984) 1,3-Dipolar cycloadditions. In: Padwa A (ed) 1,3-Dipolar cycloaddition chemistry. Wiley, New YorkGoogle Scholar
  8. Johnson I (1998) Review: fluorescent probes for living cells. Histochem J 30(3):123–140CrossRefGoogle Scholar
  9. Lin PC, Ueng SH, Tseng MC, Ko JL, Huang KT, Yu SC, Adak AK, Chen YJ, Lin CC (2006) Site-specific protein modification through CuI-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew Chem Int Ed 45(26):4286–4290CrossRefGoogle Scholar
  10. Locatelli E, Comes Franchini M (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1–17CrossRefGoogle Scholar
  11. Locatelli E, Broggi F, Ponti J, Marmorato P, Franchini F, Lena S, Comes Franchini M (2012) Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv Healthc Mater 1(3):342–347CrossRefGoogle Scholar
  12. Metallo SJ, Kane RS, Holmlin RE, Whitesides GM (2003) Using bifunctional polymers presenting vancomycin and fluorescein groups to direct anti-fluorescein antibodies to self-assembled monolayers presenting d-alanine-d-alanine groups. J Am Chem Soc 125(15):4534–4540CrossRefGoogle Scholar
  13. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262CrossRefGoogle Scholar
  14. Opsteen JA, Ayres L, van Hest JCM (2008) Click chemistry in (bio) materials sciences. Mater Matters 3:62–64Google Scholar
  15. Rostovtsev VV, Green LG, Fokin VV, Sharpless KBA (2002) Stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  16. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064CrossRefGoogle Scholar
  17. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127(13):4888–4894CrossRefGoogle Scholar
  18. Wang X, Liu L, Luo Y, Zhao H (2009) Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry. Langmuir 25:744–750CrossRefGoogle Scholar
  19. Weber G, Teale FW (1958) Fluorescence excitation spectrum of organic compounds in solution, part 1. Systems with quantum yield independent of the exciting wavelength. J Trans Faraday Soc 54:640–648CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrea Pucci
    • 1
  • Erica Locatelli
    • 1
  • Jessica Ponti
    • 2
  • Chiara Uboldi
    • 2
  • Valerio Molinari
    • 1
  • Mauro Comes Franchini
    • 1
  1. 1.Dipartimento di Chimica Industriale “Toso Montanari”University of BolognaBolognaItaly
  2. 2.Nanobiosciences UnitInstitute for Health and Consumer Protection, Joint Research CentreIspraItaly

Personalised recommendations