Advertisement

Pt–Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

  • R. M. Félix-Navarro
  • M. Beltrán-Gastélum
  • M. I. Salazar-Gastélum
  • C. Silva-Carrillo
  • E. A. Reynoso-Soto
  • S. Pérez-Sicairos
  • S. W. Lin
  • F. Paraguay-Delgado
  • G. Alonso-Núñez
Research Paper

Abstract

Bimetallic nanoparticles of Pt–Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt–Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt–Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

Keywords

Bimetallic electrocatalyst MWCNTs O2 electro-reduction H2O2 generation Electro-Fenton 

Notes

Acknowledgments

The authors acknowledge the financial support of the Mexican Council of Science and Technology (CONACyT) under Grants RED-2012-194153 and 155388, The National Laboratory for Nanotech at CIMAV Chihuahua, Mexico, is also acknowledged for use of its electron microscopy facilities. We thank Angel Licea-Claverie for comments and review of the manuscript. We also thank Carlos Ornelas for his technical help in electron microscopy and Eloisa Aparicio for performing the X-ray diffraction analysis. M. Beltrán-Gastélum, C. Silva-Carrillo, and M. I. Salazar-Gastélum are grateful to CONACyT for providing the scholarship for their doctoral thesis research.

References

  1. Alexeyeva N, Kozlova J, Sammelselg V, Ritslaid P, Mändar H, Tammeveski K (2010) Electrochemical and surface characterization of gold nanoparticle decorated multi-walled carbon nanotubes. Appl Surf Sci 256:3040–3046CrossRefGoogle Scholar
  2. Alonso-Nuñez G, Lara-Romero J, Paraguay-Delgado F, Sánchez-Castañeda FM, Jiménez-Sandoval S (2010) Temperature optimization of CNT synthesis by spray pyrolysis of alpha-pinene as the carbon source. J Exp Nanosci 5:52–60CrossRefGoogle Scholar
  3. Assumpçao MHMT, Moraes A, De Souza RFB, Gaubeur I, Oliveira RTS, Antonin VS, Malpass GRP, Rocha RS, Calegaro ML, Lanza MRV, Santos MC (2012) Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl Catal A 411–412:1–6Google Scholar
  4. Badelino C, Rodriguez CA, Bertazzoli R (2007) Oxidation of herbicides by in situ synthesized hydrogen peroxide and Fenton’s reagent in an electrochemical flow reactor: study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem 37:451–459CrossRefGoogle Scholar
  5. Bard AJ, Faulkner LR (2000) Electrochemical methods-fundamentals and applications. Wiley, New YorkGoogle Scholar
  6. Bonakdarpour A, Esau D, Cheng H, Wang A, Gyenge E, Wilkinson DP (2011) Preparation and electrochemical studies of metal–carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim Acta 56:9074–9081CrossRefGoogle Scholar
  7. Brillas E, Casado J (2002) Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47:241–248CrossRefGoogle Scholar
  8. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631CrossRefGoogle Scholar
  9. Chu YY, Qian Y, Wang WJ, Deng XL (2012) A dual-cathode Electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J Hazard Mater 199–200:179–185CrossRefGoogle Scholar
  10. Frew JE, Jones P, Scholes G (1983) Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution. Anal Chim Acta 155:139–150CrossRefGoogle Scholar
  11. Gyenge EL, Oloman CW (2001) Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes. J Appl Electrochem 31:233–243CrossRefGoogle Scholar
  12. Gyenge EL, Oloman CW (2005) The surfactant-promoted electroreduction of oxygen to hydrogen peroxide: reactor engineering aspects. J Electrochem Soc 152:D42–D53CrossRefGoogle Scholar
  13. Harrington T, Pletcher D (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J Electrochem Soc 146:2983–2989CrossRefGoogle Scholar
  14. Jaouen F, Dodelet JP (2007) Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochim Acta 52:5975–5984CrossRefGoogle Scholar
  15. Kinoshita K (1992) Oxygen electrochemical technology. Wiley, New YorkGoogle Scholar
  16. Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium. Electrochim Acta 50:179–188CrossRefGoogle Scholar
  17. Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–365CrossRefGoogle Scholar
  18. Morales-Acosta D, Arriaga LG, Alvarez-Contreras L, Fraire-Luna S, Rodriguez-Varela FJ (2009) Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes. Electrochem Commun 11:1414–1417CrossRefGoogle Scholar
  19. Özcan A, Oturan MA, Oturan N, Sahin Y (2009) Removal of acid orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163:1213–1220CrossRefGoogle Scholar
  20. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569CrossRefGoogle Scholar
  21. Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  22. Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process Electro-Fenton using a carbon felt cathode. Appl Catal B 83:140–149CrossRefGoogle Scholar
  23. Riedl HJ, Pfleiderer G (1939). US Patent 2,158,525Google Scholar
  24. Sarapuu A, Vaik K, Schiffrin DJ, Tammevesky K (2003) Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 541:23–29CrossRefGoogle Scholar
  25. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  26. Wang Q, Lemley AT (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ Sci Technol 35:4509–4514CrossRefGoogle Scholar
  27. Wang CT, Hu JL, Chou WL, Kuo YM (2008) Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152:601–606CrossRefGoogle Scholar
  28. Xu H, Zeng L, Xing S, Xian Y, Jin L (2008) Microwave-irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace arsenic(III). Electrochem Commun 10:551–554CrossRefGoogle Scholar
  29. Xu FY, Song TS, Xu Y, Chen YW, Zhu SM, Shen SB (2009) A new cathode using CeO2/MWNT for hydrogen peroxide synthesis through a fuel cell. J Rare Earths 27:128–133CrossRefGoogle Scholar
  30. Ye W, Kou H, Liu Q, Yan J, Zhou F, Wang Ch (2012) Electrochemical deposition of Au–Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrogen Energy 37:4088–4097CrossRefGoogle Scholar
  31. Zhao C, Ji L, Liu H, Hu G, Zhang S, Yang M, Yang Z (2004) Functionalized carbon nanotubes containing isocyanate groups. J Solid State Chem 177:4394–4398CrossRefGoogle Scholar
  32. Zhao GH, Pang YN, Liu L, Gao JX, Lv BY (2010) Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode. J Hazard Mater 179:1078–1083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. M. Félix-Navarro
    • 1
  • M. Beltrán-Gastélum
    • 1
  • M. I. Salazar-Gastélum
    • 1
  • C. Silva-Carrillo
    • 1
  • E. A. Reynoso-Soto
    • 1
  • S. Pérez-Sicairos
    • 1
  • S. W. Lin
    • 1
  • F. Paraguay-Delgado
    • 2
  • G. Alonso-Núñez
    • 3
  1. 1.Centro de Graduados e Investigación, Instituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Centro de Nanociencias y NanotecnologíaEnsenadaMexico

Personalised recommendations