Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

  • Fernanda Chiriacò
  • Francesco Conversano
  • Giulia Soloperto
  • Ernesto Casciaro
  • Andrea Ragusa
  • Enzo Antonio Sbenaglia
  • Lucia Dipaola
  • Sergio Casciaro
Research Paper


Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5–5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.


Biological techniques Biomedical materials Cancer detection Cells (biology) Medical diagnostic imaging Molecular imaging Nanobiotechnology Nanoparticles Toxicity 


  1. Barbe C, Bartlet J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug delivery system. Adv Mater 16:1959–1966CrossRefGoogle Scholar
  2. Buchanan KD, Huang S, Kim H, Macdonald RC, McPherson DD (2008) Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature. J Pharm Sci 97:2242–2249CrossRefGoogle Scholar
  3. Casciaro S (2011) Theranostic applications: non-ionizing cellular and molecular imaging through innovative nanosystems for early diagnosis and therapy. World J Radiol 3:249–255CrossRefGoogle Scholar
  4. Casciaro S, Palmizio Errico R, Conversano F, Demitri C, Distante A (2007) Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent. Invest Radiol 42:95–104CrossRefGoogle Scholar
  5. Casciaro S, Conversano F, Ragusa A, Malvindi MA, Franchini R, Greco A, Pellegrino T, Gigli G (2010) Optimal enhancement configuration of silica nanoparticles for US imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol 45:715–724CrossRefGoogle Scholar
  6. Casciaro S, Soloperto G, Greco A, Casciaro E, Franchini R, Conversano F (2013) Effectiveness of functionalized nanosystems for multimodal molecular sensing and imaging in medicine. IEEE Sens J 13:2305–2312CrossRefGoogle Scholar
  7. Chang JS, Chang KL, Hwang DF, Kong ZL (2007) In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068CrossRefGoogle Scholar
  8. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16:561–573CrossRefGoogle Scholar
  9. Conversano F, Franchini R, Lay-Ekuakille A, Casciaro S (2012a) In vitro evaluation and theoretical modeling of the dissolution behavior of a microbubble contrast agent for US imaging. IEEE Sens J12:496–503CrossRefGoogle Scholar
  10. Conversano F, Greco A, Casciaro E, Ragusa A, Lay-Ekuakille A, Casciaro S (2012b) Harmonic US imaging of nanosized contrast agents for multimodal molecular diagnoses. IEEE Trans Instrum Meas 61:1848–1856CrossRefGoogle Scholar
  11. Conversano F, Soloperto G, Greco A, Ragusa A, Casciaro E, Chiriacò F, Demitri C, Gigli G, Maffezzoli A, Casciaro S (2012c) Ecographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. Int J Nanomed 7:4373–4389Google Scholar
  12. Dayton PA, Rychak JJ (2007) Molecular US imaging using microbubble contrast agents. Front Biosci 12:5124–5142CrossRefGoogle Scholar
  13. Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, Zutshi R, Doinikov A, Ferrara KW (2006) Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging 5:160–174Google Scholar
  14. Dipaola L, Chiriacò F, Sbenaglia EA, Conversano F, Ragusa A, Casciaro S (2011) Cytotoxicity assessment of silica-based nanosized contrast agents for US molecular imaging. In: Proceedings of the IEEE sensors conference October 28–31. Limerick, IrelandGoogle Scholar
  15. Fajaroha F, Setyawanb H, Nur A, Lenggoroc IV (2013) Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Adv Powder Technol 24:507–511CrossRefGoogle Scholar
  16. Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575CrossRefGoogle Scholar
  17. Greaby R, Zderic V, Vaezy S (2007) Pulsatile flow phantom for US image-guided HIFU treatment of vascular injuries. US Med Biol 33:1269–1276CrossRefGoogle Scholar
  18. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399:3–27CrossRefGoogle Scholar
  19. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95:4607–4612CrossRefGoogle Scholar
  20. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818CrossRefGoogle Scholar
  21. Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951CrossRefGoogle Scholar
  22. Liu J, Levine AL, Mattoon JS, Yamaguchi M, Lee RJ, Pan X, Rosol TJ (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51:2179–2189CrossRefGoogle Scholar
  23. Liu J, Li J, Rosol TJ, Pan X, Voorhees JL (2007) Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 52:4739–4747CrossRefGoogle Scholar
  24. Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7:3132–3138CrossRefGoogle Scholar
  25. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284CrossRefGoogle Scholar
  26. Malugin A, Herd H, Ghandehari H (2011) Differential toxicity of amorphous silica nanoparticles toward phagocytic and epithelial cells. J Nanopart Res 13:5381–5396CrossRefGoogle Scholar
  27. Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A (2011) Magnetic/silica nanocomposites as dual-mode contrast agents for combined magnetic resonance imaging and ultrasonography. Adv Funct Mater 21:2548–2555CrossRefGoogle Scholar
  28. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439CrossRefGoogle Scholar
  29. Masotti L, Biagi E, Scabia M, Acquafresca A, Facchini R, Ricci A, Bini D (2006) FEMMINA real-time, radio-frequency echo-signal equipment for testing novel investigation methods. IEEE Trans Ultrason Ferroelectr Freq Control 53:1783–1795CrossRefGoogle Scholar
  30. Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39CrossRefGoogle Scholar
  31. Park MVDZ, Lynch I, Ramírez-García S, Dawson KA, de la Fonteyne L, Gremmer E, Slob W, Briedé JJ, Elsaesser A, Howard CV, van Loveren H, de Jong WH (2011) In vitro evaluation of cytotoxic and inflammatory properties of silica nanoparticles of different sizes in murine RAW 264.7 macrophages. J Nanopart Res 13:6775–6787CrossRefGoogle Scholar
  32. Pascali G, Conversano F, Casciaro S, Salvadori P (2012) A translational perspectives in molecular imaging: methodological evolution and nanostructured materials. Recenti Prog Med 103:142–153Google Scholar
  33. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882CrossRefGoogle Scholar
  34. Rabolli V, Thomassen LC, Princen C, Napierska D, Gonzales L, Kirsch-Volders M, Hoet PH, Huaux F, Kirschhock CE, Martens JA, Lison D (2010) Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4:307–318CrossRefGoogle Scholar
  35. Rasaneh S, Rajabi H, Babaei MH, Akhlaghpoor S (2011) MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. J Nanopart Res 13:2285–2293CrossRefGoogle Scholar
  36. Rawashdeh WA, Kray S, Pich A, Pargen S, Balaceanu A, Lenz M, Spöler F, Kiessling F, Lederle W (2012) Polymeric nanoparticles as OCT contrast agents. J Nanopart Res 14:1255CrossRefGoogle Scholar
  37. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN (2011) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 102:279–284CrossRefGoogle Scholar
  38. Shan L, Chopra A, Leung K, Eckelman WC, Menkens AE (2012) Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging. J Nanopart Res 14:1122CrossRefGoogle Scholar
  39. Sirsi S, Feshitan J, Kwan J, Homma S, Borden M (2010) Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Ultrasound Med Biol 36:935–948CrossRefGoogle Scholar
  40. Soloperto G, Casciaro S (2012) Progress in atherosclerotic plaque imaging. World J Radiol 4(353):371Google Scholar
  41. Stober W, Fink A, Bohn E (1968) Controlled growth of mono-disperse silica sphere in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  42. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157CrossRefGoogle Scholar
  43. Thomassen LC, Aerst A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CE, Martens JA (2010) Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26:328–335CrossRefGoogle Scholar
  44. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440CrossRefGoogle Scholar
  45. Van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 49:1405–1414CrossRefGoogle Scholar
  46. Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43CrossRefGoogle Scholar
  47. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654CrossRefGoogle Scholar
  48. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333Google Scholar
  49. Wheatley MA, Forsberg F, Dube N, Patel M, Oeffinger BE (2006) Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med Biol 32:83–93CrossRefGoogle Scholar
  50. Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, Schlager JJ, Hussain SM (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24CrossRefGoogle Scholar
  51. Zhu Y, Fang Y, Borchardt L, Kaskel S (2011) PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microp Mesop Mater 141:199–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fernanda Chiriacò
    • 1
  • Francesco Conversano
    • 1
  • Giulia Soloperto
    • 1
  • Ernesto Casciaro
    • 1
  • Andrea Ragusa
    • 2
  • Enzo Antonio Sbenaglia
    • 1
  • Lucia Dipaola
    • 1
  • Sergio Casciaro
    • 3
  1. 1.Bioengineering Division, National Research CouncilInstitute of Clinical PhysiologyLecceItaly
  2. 2.National Nanotechnology Laboratory of CNR-NANOLecceItaly
  3. 3.Consiglio Nazionale delle RicercheIstituto di Fisiologia Clinica (CNR-IFC) c/o Campus Universitario EcotekneLecceItaly

Personalised recommendations