Novel star-type methoxy-poly(ethylene glycol) (PEG)–poly(ε-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin

  • Runliang Feng
  • Wenxia Zhu
  • Zhimei Song
  • Liyan Zhao
  • Guangxi Zhai
Research Paper


To improve curcumin’s (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)–poly(ε-caprolactone) (MPEG–PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and ε-caprolactone as raw materials. The structure of the novel copolymer was characterized by 1H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 ± 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 × 105 times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.


Star MPEG–PCL Nanoparticle Curcumin In vitro release 



This work is supported by the Excellent Young Scientist Award Fund of Shandong Province, China (BS2011CL006) and Scientific Research Fund of University of Jinan (XKY1208).

Conflict of interest

The authors report no conflicts of interest in this work.


  1. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398Google Scholar
  2. Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32:5906–5914. doi: 10.1016/j.biomaterials.2011.04.069 CrossRefGoogle Scholar
  3. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, Ithakissios DS (2003) Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int J Pharm 259:115–127CrossRefGoogle Scholar
  4. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5:3. doi: 10.1186/1477-3155-5-3 CrossRefGoogle Scholar
  5. Cerda-Cristerna BI, Flores H, Pozos-Guillén A, Pérez E, Sevrin C, Grandfils C (2011) Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J Control Release 153:269–277. doi: 10.1016/j.jconrel.2011.04.016 CrossRefGoogle Scholar
  6. Dutta P, Dey J (2011) Drug solubilization by amino acid based polymeric nanoparticles: characterization and biocompatibility studies. Int J Pharm 421:353–363. doi: 10.1016/j.ijpharm.2011.10.011 CrossRefGoogle Scholar
  7. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3:1558–1567. doi: 10.1039/c0nr00758g CrossRefGoogle Scholar
  8. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652. doi: 10.1007/s00018-008-7452-4 CrossRefGoogle Scholar
  9. Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, Chen J, Yang Y (2003) Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene oxide)–polylactide amphiphilic copolymer nanoparticles. Biomaterials 24:2395–2404CrossRefGoogle Scholar
  10. Jia W, Gu Y, Gou M, Dai M, Li X, Kan B, Yang J, Song Q, Wei Y, Qian Z (2008) Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Deliv 15:409–416. doi: 10.1080/10717540802321727 CrossRefGoogle Scholar
  11. Karewicz A, Bielska D, Gzyl-Malcher B, Kepczynski M, Lach R, Nowakowska M (2011) Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf B 88:231–239. doi: 10.1016/j.colsurfb.2011.06.037 CrossRefGoogle Scholar
  12. Lee H, Zeng F, Dunne M, Allen C (2005) Methoxy poly(ethylene glycol)-block–poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 6:3119–3128. doi: 10.1021/bm050451h CrossRefGoogle Scholar
  13. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block–polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97:1179–1190. doi: 10.1002/jps.21037 CrossRefGoogle Scholar
  14. Lu DD, Yuan JC, Li H, Lei Z-Q (2008) Synthesis and characterization of a series of biodegradable and biocompatible PEG-supported poly(lactic-ran-glycolic acid) amphiphilic barbell-like copolymers. J Polym Sci A 46:3802–3812. doi: 10.1002/pola.22729 CrossRefGoogle Scholar
  15. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. doi: 10.1016/j.lfs.2005.12.007 CrossRefGoogle Scholar
  16. Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157. doi: 10.1021/cr900174j CrossRefGoogle Scholar
  17. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144. doi: 10.1021/nn200809t CrossRefGoogle Scholar
  18. Mohanty C, Sahoo SK (2010) The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31:6597–6611. doi: 10.1016/j.biomaterials.2010.04.062 CrossRefGoogle Scholar
  19. Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK (2010) Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine 5:433–449. doi: 10.2217/nnm.10.9 CrossRefGoogle Scholar
  20. Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B 81:263–273. doi: 10.1016/j.colsurfb.2010.07.020 CrossRefGoogle Scholar
  21. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750. doi: 10.1002/jnr.20025 CrossRefGoogle Scholar
  22. Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu B, Li Q, He R, Hu G (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 20:125101. doi: 10.1088/0957-4484/20/12/125101 CrossRefGoogle Scholar
  23. Petrova S, Riva R, Jérôme C, Lecomte P, Mateva R (2009) Controlled synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization. Eur Polym J 45:3442–3450. doi: 10.1016/j.eurpolymj.2009.09.009 CrossRefGoogle Scholar
  24. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009a) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30:5757–5766. doi: 10.1016/j.biomaterials.2009.07.020 CrossRefGoogle Scholar
  25. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009b) Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 30:3009–3019. doi: 10.1016/j.biomaterials.2009.02.011 CrossRefGoogle Scholar
  26. Sahu A, Bora U, Kasoju N, Goswami P (2008) Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 4:1752–1761. doi: 10.1016/j.actbio.2008.04.021 CrossRefGoogle Scholar
  27. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230. doi: 10.1016/j.ejps.2009.02.019 CrossRefGoogle Scholar
  28. Shao J, Zheng D, Jiang Z, Xu H, Hu Y, Li X, Lu X (2011) Curcumin delivery by methoxy polyethylene glycol–poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells. Acta Biochim Biophys Sin (Shanghai) 43:267–274. doi: 10.1093/abbs/gmr011 CrossRefGoogle Scholar
  29. Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T (2000) Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33:4316–4320. doi: 10.1021/ma992138b CrossRefGoogle Scholar
  30. Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G (2011) Curcumin-loaded PLGA–PEG–PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354:116–123. doi: 10.1016/j.jcis.2010.10.024 CrossRefGoogle Scholar
  31. Sun M, Zhao L, Guo C, Cao F, Chen H, Zhao L, Tan Q, Zhu X, Zhu F, Ding T, Zhai Y, Zhai G (2012) Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles. J Nanopart Res 14:1–13. doi: 10.1007/s11051-011-0705-4 Google Scholar
  32. Thamake SI, Raut SL, Ranjan AP, Gryczynski Z, Vishwanatha JK (2011) Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology 22:035101. doi: 10.1088/0957-4484/22/3/035101 CrossRefGoogle Scholar
  33. Tsai YM, Chien CF, Lin LC, Tsai TH (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm 416:331–338. doi: 10.1016/j.ijpharm.2011.06.030 CrossRefGoogle Scholar
  34. Tsutsumi T, Hirayama F, Uekama K, Arima H (2008) Potential use of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for short hairpin RNA-expressing plasmid DNA. J Pharm Sci 97:3022–3034. doi: 10.1002/jps.21206 CrossRefGoogle Scholar
  35. Wurm F, Frey H (2011) Linear-dendritic block copolymers: the state of the art and exciting perspectives. Prog Polym Sci 36:1–52. doi: 10.1016/j.progpolymsci.2010.07.009 CrossRefGoogle Scholar
  36. Yallapu MM, Jaggi M, Chauhan SC (2010) Beta-cyclodextrin–curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B 79:113–125. doi: 10.1016/j.colsurfb.2010.03.039 CrossRefGoogle Scholar
  37. Yan Q, Yuan J, Zhang F, Sui X, Xie X, Yin Y, Wang S, Wei Y (2009) Cellulose-based dual graft molecular brushes as potential drug nanocarriers: stimulus-responsive micelles, self-assembled phase transition behavior, and tunable crystalline morphologies. Biomacromolecules 10:2033–2042. doi: 10.1021/bm801313q CrossRefGoogle Scholar
  38. Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, Liu K, Tian Y, Tian G, Li Z, Sun H, Mei L (2010) A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater 6:2045–2052. doi: 10.1016/j.actbio.2009.11.035 CrossRefGoogle Scholar
  39. Zhou S, Deng X, Yang H (2003) Biodegradable poly(epsilon-caprolactone)–poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24:3563–3570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Runliang Feng
    • 1
  • Wenxia Zhu
    • 1
    • 2
  • Zhimei Song
    • 1
  • Liyan Zhao
    • 3
  • Guangxi Zhai
    • 4
  1. 1.Department of Pharmaceutical Engineering, School of Medicine and Life SciencesUniversity of Jinan, Shandong Academy of Medical ScienceJinanChina
  2. 2.Shandong Academy of Medical SciencesJinanChina
  3. 3.Department of PharmacyHebei North UniversityZhangjiakouChina
  4. 4.Department of Pharmaceutics, College of PharmacyShandong UniversityJinanChina

Personalised recommendations